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Abstract: The objective of this work has been to develop
fayers of control and optimization modules for the purpose
of urban traffic management. We utilize the semantic confrol
paradigm to model both the macrolevel (traffic control) and
the microlevel (vehicle path planning and steering control).
A semantic controller consists of three modules for identifica-
tion, goal selection, and adaptation, respectively. This hierar-
chical structure has been used successfully at the Center for
Optimization and Semantic Control to solve complex, non-
linear, and time-varying problems. In our previous work we
have used a judicious combination of artificial intelligence,
optimization, and control systems.

The focus of this paper is the identifier module, which per-
forms “system identification,” i.e., determines the voad net-
work congestion level. Traffic flow can be characterized as a
nonlinear stochastic process where linear prediction models
such as linear regression are not suitable. However, neural
network techniques may provide an effective tool for data-
based modeling and system identification. The radial basis

* To whom correspondence should be addressed.

Sunction neural network (RBFNN) is an attractive fool for
nonlinear time-series modeling and traffic-flow prediction.
The goal selector module that finds the shortest path is also
discussed in some detail.

A model of the highway system, based on historical data
provided by Missouri Highway and Transportation Depart-
ment (MoHTD), has been developed. The prediction and
planning system is evaluated using the traffic-flow data from
nine sensors located on the highway in the St. Louis metropoli-
tan area.

1 INTRODUCTION

The emergence of the various thrusts of Intelligent Trans-
portation Systems (ITS)!:!> presents numerous new theoret-
ical and practical challenges; many of these deal with the
modeling, prediction, cause-and-effect relationships, anal-
ysis, optimization, and control of an overall transportation
system. In view of these, an advanced traffic management
system (ATMS) will require a dynamic traffic model that can

© 1998 Computer-Aided Civil and Infrastructure Engineering. Published by Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA,

and 108 Cowley Road, Oxford OX4 1JF, UK,




316 S. Massoud Amin, E. Y. Rodin, A-P. Lin, K. Rink, and A. Garcia-Ortiz

operate in real time and reliably predict traffic congestion. In
general, the solution methodologies available for this prob-
lem can be grouped into five categories”': computer simu-
lation, mathematical programming, optimal control, artificial
intelligence, and intelligent control. Qur methodology, one of
intelligent/hybrid control, utilizes algorithms and tools from
all the preceding approaches. Such hybrid systems for ATMS
attempt to cope with the nonlinear and stochastic nature of
traffic flow and incidents,

There are two approaches to a general prediction probiem:
explanatoty and time series. Explanatory forecasting eval-
uates a cause-and-effect relationship between inputs to the
system and its outputs. Usually, the inputs and outputs can be
expressed as equations. On the other hand, time-series fore-
casting treats a system as a black box. The system is neither
“fully” understood nor explicitly represented; therefore, the
causes and effects at the output are not clearly explained.
It relies on the discovery of strongly empirical regularities
in the observation of the system. Traffic-flow forecasting
can be viewed as a time-series prediction problem: Given
a sequence x(1}, x(2), ..., x(&¥), predict the continuation
x(N+ 1), x(N+2), x(N+3), ... Inthe past three decades,
several methods have been applied to traffic-flow prediction
problems. Among these are the Kalman and adaptive filtering
methods, as well as the Box-Jenkins method. They typically
provide a one-step ahead prediction. The radial basis func-
tion neural network (RBFNN) has been proposed by different
authors,* and it is an attractive tool for time-series predic-
tion and system identification problem. Qur goal here is to
design a system identifier via RBFNN for every sensor sta-
tion in the St. Louis area. Each system identifier uses the
its own past traffic-flow data and other sensors’ past traffic
flow as input. The output of the system is the predicted traffic
flow.

1.1 Traffic management via semantic control

In this approach, utilizing the semantic control paradigm,
we implement a hybrid prediction/routing/control system to
model both the macro level (traffic control) and the micro
level (in-vehicle path planning and steering control). A se-
mantic controller consists of three modules for identification,
goal selection, and adaptation, respectively. This hierarchi-
cal structure has been used successfully at the Center for
Optimization and Semantic Control to solve complex, non-
linear, and time-varying problems,316.24-26.34.36 A cemantic
controller (Figure 1) consists of

Identifier: Processes traffic data and interprets the available
information for travel times and incidents.

Goal Selector: Generates and evaluates candidate paths
and provides a traveler advisory.

Adapter: Implements vehicle steering control laws and
provides driver’s support.
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Fig. 1. A semantic control system consists of a system identifier, a
goal selector, a control system adapter, and one or more control
systems/laws.
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Fig. 2. Functional block diagram of the identifier and the goal
selector modules.

A functional block diagram of our methodology is depicted
in Figure 2; the system consists of three main parts: prepro-
cessor, system identifier, and goal selector.

The preprocessor consists of codes for calculation of cor-
relation coefficients and the radial basis function neural net-
work (RBFNN) training algorithm. RBFNNs are trained to
predict traffic volumes at nine sensor stations located along
the major highways in the St. Louis area. As a part of the
training algorithm, the auto-correlation coefficient and the
cross-correlation coefficient between sensors are used to se-
lect inputs to the RBFNN for each sensor. After the input data
have been selected, the K-means algorithm, width estima-
tion, and least-mean-square atgorithm are performed to com-
plete the RBFNN training. The system identifier consists of
an incident detection rule-based system, a volume estimator
for nodes and/or links without sensors, and a speed-volume
lookup table for speed estimation.

The geal selector handles traffic routing for maximum use
of available road network capacity; the goal selector consists
of two submeodules, one for traffic management in signaled
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Fig. 3. The graphic user interface for the St. Louis highway
system.

streets and another for highway traffic control (advisory).
The adapter copes with changes as well as providing micro-
level driver’s support for shortest-path routing and steering
control (an in-vehicle driver’s assistance). In summary, the
identifier has a stochastic prediction medule, rules for inci-
dent detection, and a radial basis function neural network-
based estimator. The goal selector consists of shortest-path
algorithms and a discrete-event dynamic system simulation
of signaled intersections. The control laws in the adapter are
developed for two situations: (1) vehicle control within a pla-
toon and (2) neurocontrol of a single vehicle. In this paper
we focus mostly on the first module, the identifier, which
is more closely tied to the use of neural networks for system
identification and parameter estimation; additionally, we will
discuss the goal selector module in Section 4 of this paper.

2 IDENTIFIER: TRAFFIC FLOW ESTIMATION
AND PREDICTION

There are currently nine permanent sensors deployed in sev-
eral locations on some of the major highways in the area.
Figure 3 depicts a facsimile of the St. Louis highway net-
work with marked locations for the sensor stations; it is also
our graphic user interface.

From a modeling point of view, the problem of dynamic
traffic-flow assignment can be viewed as the prediction of the
behavior of traffic flow where the flow varies both temporally
and spatially, The temporal nature of the flow is evident in data
shown in Figures 4 and 5. For example, Figure 4 corresponds
to eastbound traffic along I-70 near the city of St. Louis, Two
temporal patterns can be discerned from the graph: a daily
flow pattern and a weekly flow pattern. Both of these are being
explored by Department of Transportation (DOT) personnel
for road-maintenance scheduling and by ITS researchers for
trip planning and vehicle routing. A third pattern, not yet
addressed in the literature until now, is the seasonal or annual
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Fig. 4. The periodicity of traffic flow evidences itself when

vehicle counts obtained through the use of roadside sensors are
graphed as surface plots.
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Fig. 5. I-70 westbound traffic, Thursdays.

pattern, which reflects vacation travel during holidays and the
summer and winter seasons. This last pattern is incorporated
inthe I'TS research being conducted at Systems & Electronics,
Inc., and Washington University in St. Louis. Temporal traffic
flow is due to work-related travel, i.e., travel to and from work
from Monday through Friday between the hours of 8 A.M.
and 4 p.M. Spatial traffic flow is due to the population and
workplace distributions in a given area. As a result of this,
some fundamental issues arise when atlempting to model
traffic flow, namely:

Where to place traffic flow sensors?

How to characterize the traffic flow?

How to manage the traffic load?

What on-line estimators to use for system identification
and parameter estimation?

How to perform vehicle routing and adjust traffic signals?
o How to formulate traffic flow (e.g., as interconnected pipes
with adjustable valves or as discrete event dynamics, a
system approach versus a mathematical programming and
combinatorial optimization)?
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2.1 A brief introduction to radial basis function neural
networks (RBFNNs)

The input-output of a RBENN (see, for example, ref. 15) is

CharaCtel‘iZE‘,d by
Gj Peee (1)

y = (Cx

Xi =

where u € R represents the input, x € R" is the output of
the hidden layer, y € !®7 is the network output, C € RExm
is the weight matrix, and ¢; € R” and ¢; > 0 are the
center and variance of the "™ unit. Examples of radial ba-
sis function include ® () = rZlogr, ®(r) = (r? + 2,
and ®(r) = exp[—(r*/o?)]. It has been stated by Park and
Sandberg®? that the radial basis function is capable of univer-
sal approximation. The approximation capability of a gaus-
sian REBNN is stated next.

Theorem (RBFNN Approximation). Let K be a compact
subset of the R™ and f: K — WP be a continuous mapping.
Then, for any & > Q, there exists an integer ny, a matrix C ¢
MM vectorsc; € WM and scalarso; > Oforl =1,...,ny
such that max,cx || f(x) — FOO| < &, where f1 K — ®¥
is given by Eq. (1) with gaussian activation functions.

Radial basis functions were first introduced as a technique
forreal-valued multivariate interpolation problems. The work
is surveyed by Powell.*® Since then, radial basis function
{RBF) (e.g., gaussian function) approximation has become a
very popular technique for interpolation in multidimension
space. Radial basis function neural networks have attracted
a great deal of interest because of their fast learning and
simple network structure. Instead of applying stochastic ap-
proximation techniques to neural network design problems,
RBFNNs use a curve-fitting approach. In the context of neural
networks, the hidden layers provide a combination of a “func-
tion” that constitutes an arbitrary basis for the input data when
they are passing through the hidden layer. These functions are
called radial basis functions. In this paper, all functions in
the hidden layer are gaussian functions. Therefore, it is also
called gaussian basis function neural network. Thus a radial
basis function neural network can be regarded as a special
fully connected two-layer feedforward neural network with
radial activation functions in the hidden layer. Besides the
traditional weight adjusting for neural networks, the training
of RBFNNSs also consists of center and width parameter esti-
mation for the RBF. The performance of a RBFNN critically
depends on the chosen centers and widths, RBFNNs have a
fast learning (or training) speed that makes them a powerful
tool for on-lineg problems. They have been used in system
identification, modeling, classification, load forecasting, and
bankruptcy-prediction problems.

fi(x)

Fig. 6. A radial basis function neural network.

2.2 Radial basis function neural network structure

Figure 6 shows the basic structure of a RBFNN with » inputs
and 1 output. A RBENN consists of two layers: a hidden layer
and an output layer. The output nodes form a linear combina-
tion of the basis functions computed by hidden layer nodes.
The input nodes pass each input to every hidden layer with-
out weights. Therefore, each hidden node receives input data
unaltered; the hidden nodes contain the gaussian function,
whose purpose is similar to that of the sigmoid function {(nor-
mally used in backpropagation networks). It is nonmonotonic
in contrast to the monotonic sigmoidal function. It performs
a nonlinear transformation of the input data, using a parame-
ter vector called center. The euclidean distance between the
center and the input is calculated, and the result is passed
through the nontinear function to generate the output, The
second layer of connection is weighted. The final output of
the network is just a linear combination of the output of the
hidden layer. This function produces the largest output when
the input variables are closest to the center, and its output de-
creases as the distance from the center increases. The width
of the gaussian function controls the rate of decrease, with
a smaller width giving rise to a rapidly decreasing function.
It serves the same purpose as the standard deviation in the
standard normal probability distribution, although it is not
estimated in the same way. The learning phase in the ra-
dial basis function neural network can be divided into three
steps and two phases. The three steps are (1) find the centers,
(2} find the widths, and (3) weight training on the outer layer.
The two phases are (1) unsupervised learning (centers and
widths) and (2) supervised learning (weight training). The
performance of an RBENN critically depends on the chosen
centers and widths. The selection of values for centers and
widths is discussed in the following subsections.

2.2.1 Learning algorithm
Training an RBF neural network consists of determining the
location of the centers and widths for the hidden layer and the
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Table 1
K-means algorithm

Procedure K-means
Initialize a group of clusters ¢; whose centers
are w; Jj=L2,....N
Repeat
for all training pattern x; do
Assign x; to ¢; if d(x; — wy) is minimum
forall j=1,2,...,N
end
for all w; do

1
New w; = m—Zx;
i

X Ef
end
Until cluster centers do not change from one
iteration to the next

weights of the output layer. It is trained using a two-phase
approach: In the first phase, unsupervised learning occurs,
whose main objective is to optimize the location of center
and width, In the second phase, the output layer is trained
in a supervised mode using the least-mean-square (LMS)
algorithm to adjust the weight so as to obtain the minimum
mean square error at the output. The following are the three
steps of the hybrid learning method for an RBENN, and they
are discussed in more detail in the next three subsections:

1. Find the cluster centers of the radial basis function; use
the K-means clustering algorithm.

2. Find the width of the radial basis function.

3. Find the weights; use LMS.

2.2.2 Calculation of centers

There are numerous clustering algorithms that can be used
to find the center of the hidden layer. The most popular is
the K-means clustering algorithm. The simplicity of the K-
means clustering algorithm, combined with its capability to
produce good results, makes it the most widely known cluster-
ing method. The purpose of applying the K-means clustering
algorithm is to find a set of clustered centers and a partition
of training data into subciasses. The center of each cluster
is initialized to a randomly chosen input datum. Then each
training datum is assigned to the cluster that is nearest to it-
self. After training data have been assigned to a new cluster
unit, the new center of a cluster represents the average of the
training data associated with that cluster unit. After all the
new centers have been calculated, the process is repeated un-
til it converges. Another popular way to find centers is based
on the orthogonal least squares method’; a pseudocode for
the algorithm is given in Table 1.

Table 2
LMS algorithm

Procedure LMS
Initialize the weights
Repeat
choose training pair (x, d)
forall j do
Y = upx
end
for all j do
e =y —d
end
for all j do
wilk + 1) = w; (k) + pex
end
until termination condition reached

2.2.3 Width calculation :

After the RBF centers have been found, the width is calcu-
lated. The width represents a measure of the spread of data
associated with each node. The most common way is to make
them equal to the average distance between the cluster cen-
ters and the associated training data. Other ways to calcu-
late the width is the P-nearest neighbor method and genetic
algorithm,?? a robust stochastic search technique.

1 -
o} = VA =" —cp)
4 xEQJ
where 6; is the cluster j
M; is the number of members in 6;

¢; is the center of 6;

2.2.4 Weight estimation

Learning in the outer layer is performed after calculation of
the centers and widths of the RBF in the hidden layer has been
completed. The objective is to minimize the error between
the observed output and desired one. It is commonly trained
using the LMS algorithm {Table 2). Another popular method
for the weight training is the pseudoinverse algorithm.

3 AN ILLUSTRATIVE EXAMPLE

Our radial basis function neural network consists of a total of
72 neurons, There are six input nodes (previous traffic flow)
and one output (predicted traffic flow). For illustration, let us
consider the sensor 605 EB (1-70 eastbound in Figure 3). After
all the auto-correlations and cross-correlations between the
605 EB and other sensors have been calculated, the highest
6 correlation coefficients were used as input to the neural
network. The six centers for each neuron were then calculated
using the K-means clustering algorithm. After the centers
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Fig. 7. Traffic flow (actual compared with the predicted value) at
sensor station 6035 EB for (top) the first week of March 1993,
{middle) the third week of March 1995, (bottom) the second week
of April 1995,

were computed, the width of each neuron was calculated,
and then we proceeded with the weight training via the LMS
method (see Figure 7).

Box-Jenkins autoregression integrated moving average
(ARIMA) is a traditional regression technique for time-series
forecasting.%” It consists of three basic components: an-
toregressive [AR(p)] component, moving average [MA(g)]
component, and integration (I) component. An AR of order
P, AR(p), canbe expressed as x;, = a1 x;_| +apx—2 +-- -+
dpX;—; + ¢ An MA of order g, MA(g), can be expressed
asxy = —(bre,_ | +bye,g + -+ byer_y) + e, where ¢, is
the error term at time ¢, Integration is the number of differ-
ences needed to take in a time series to achieve stationarity.
An ARIMA(p, g, d) includes both AR and MA terms in the
time series, where p is the order of the autoregression, g
is the order of the moving average, and 4 is the number of
differences taken.

The task was then to use identification tools to identify the
appropriate order for each of the three basic ARIMA model
components. The identification task is usually complex and
time-consuming, We compared the results of the RFBNN
prediction versus those of the Box-Jenkins method; the RMS
error for the RBFNN was one order of magnitude smaller
than that of the ARIMA model. As illustrated in Figure 7,
the RBFNN yields a better result than the ARIMA model.
The training time took less than 5 minutes on a Pentium 100

computer’"'2; the code is implemented in Borland C++.

4 GOAL SELECTOR: TRAFFIC MANAGEMENT
AND ROUTE PLANNING

Dynamic traffic prediction and control provide a promising
area for research, development, and the application of intel-
ligent controllers, i.e., hierarchical controllers that use arti-
ficial intelligence, mathematical programming, and optimal
control theory. The approach calls for a judicious combina-
tion of pattern recognition, prediction, system identification,
goal selection and optimization, and adaptation and regula-
tion. A tutorial on these technologies as well as reference to
traffic management is provided in refs, 1 and 15.

Vehicle path planning is central to the development of ad-
vanced traveler infermation systems (ATIS). An enabling
technology for the navigation system is the availability of
and improvements to vehicle location systems. These in-
clude global positioning systems (GPSs), mobile communi-
cation networks, dead-reckoning technology, Argos, Loran-
C, Omega, and Lojack.2! A typical vehicle navigation sys-
tem contains several modules: sensors for heading, distance
traveled, and geographic location; digital map database; data
transceiver; user inputs and control commands; and informa-
tion display and audio/graphic outputs,'>?! Examples of such
GPS routers include Blaupunkt’s Berlin RCM 303 A mobile
information center {designed by Blaupunkt, Robert Bosch
GmbH, Hildesheim, Germany), General Motor’s TravTek,
Oldsmobile’s Guidestar, Telepath 100 by Delco Electronics,
and Sony’s NVX-F160, which uses a GPS with digital street
maps developed by Etak, Inc. In this subsection we provide
a very brief overview of our approach, methodologies, the-
oretical formulations, and implementation of route-planning
algorithms that provide the driver with “optimal” routes in
a timely and memory-efficient manner. These have been ex-
tracted from network optimization and search and planning
applications in artificial intelligence.

From a representation point of view for a given a list of m
vertices and n edges, and estimated flows on each edge, there
are several ways to represent such a road network for com-
puter processing. These include adjacency lists, edge lists,
forward star, vertex adjacency matrix, and a vertex-edge in-
cidence matrix.! Excellent reviews, bibliographies, and sur-
veys on shortest-path problems and related subjects have been
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Fig. 8. In searching for a shortest path between A and B,
hierarchical segmentation of the network reduces a
time-consuming SP problem into three smaller SP problems.

published *!0-12.1418 Bor this problem, the street/highway
databases are typically organized as a set of nodes (vertices)
and arcs (edges). The roads can be viewed as arcs in a graph,
their intersections being the nodes in the graph. Depending
on the problem, the weights associated with the arcs can be
either distance, travel time, or scenic utility. Once the graph is
defined, several techniques can be applied to find the “best”
route to follow. Among them are Dijkstra’s Shortest Path,
L-Deque, L-2Queue, and Hierarchical Segmentation. How
quickly a solution can be found is more directly related to the
size of the graph than to the particular shortest-path (SP) al-
gorithm used. Consider a metropolitan area such as St. Louis
County, MO. For this locale, the number of arcs in the graph
is about 35,000. Any one of the first three SP algorithms
mentioned earlier will take on the order of tens of minutes
to find a solution; judicious segmentation of the graph and
concatenation of several solutions reduce the graph size to
several hundred arcs and the overall computation time to a
few seconds. Figure 8 shows the road map associated with
a routing problem when the Hierarchical Segmentation ap-
proach is used. Compare this with the “raw” map shown in
Figure 9.

4.1 Shortest-path algorithms for street/highway traffic
management

Street/highway databases are typically organized as a set of
nodes (vertices) and arcs (edges). A computational complex-
ity summary of several exact solution methods for shortest-
path problems (SPP) is given in Table 3. The number of ver-
tices in the graph is », and the number of edges is m.

The main objectives of our work in this area have been
implementation, simulation, testing, and performance evalu-
ation of several algorithms for inter- and intracity dynarnic
routing. Three shortest-path algorithms were intially coded
into MODSIM on the Sun workstation. These algorithms
were a partitioning shortest path (PSP) model, an L2-Queue
(L2Q) model, and Dijkstra’s shortest path (DSP) model, The
PSP algorithm is presented in ref. 4; the L2Q algorithm and

Fig. 9. Finding a path from A to B in the typical metropolitan area
represents an SP problem of horrendous magnitude due to the
large number of streets involved.

the DSP algorithm are given in ref. 28. The PSP algorithm
is an example of a label-correcting algorithm that was orig-
inally proposed by Glover et al. in 1985.%12 Let s represent
the root node, x is any node, 4(x) is the label for node x,
FS(x) is the forward star for node x, and a(x,, x») is the arc
length from x; to x;. The pseudocode is as follows:

Step 1: d{s):=0

d{x) =00 for all x #s

Set the predecessor function p(x) =0

for all x
Create two mutually exclusive and
collectively exhaustive lists of unlabeled
nodes call NOW and NEXT.

Initialize NOW = {s} and NEXT = [}
Step 2: Select any node in NOW, call it node

. If NOW is empty, go to step 4.
Step 3: Delete node u from NOW.

For all v € FS(u)

if du) + alu,v) < dw)
then d(v) := d(u) + alu, v)
pv) =u

Add node v to NEXT if it is not

already in NEXT or NOW. Go to step 2.
Step 4: If NEXT is empty, stop.

Elge k;=k+ 1. Transfer all nodes

from NEXT to NOW. Go to step 2.

The L2Q algorithm makes use of linked lists in order to
implement the set of candidate nodes Q. In particular, ¢ is
implemented by means of a 2-queue. In the following pseudo-
code, let P[x] be the predecessor of node x, P[x] the label
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Table 3
Computational complexity summary for various exact solution methods

Dijkstra’s SP
Partitioning algorithm
Dijkstra’s two-tree algorithm

Requires 3n{n — 1)/2 operations; O(r*) running time. A label-setting method.
O(nm), with modification O({n?). A label-correcting method.
A bidirectional search; Dijkstra’s algorithm generated about 50 percent of all

vertices to find a SP from s to ¢; the two-tree method generated 6 percent of the
vertices. Good for problems where repeated solutions of SPP are needed.

L-2Queue (Pape-All Dest)
S-Heap (Heap-All Dest)
Heap-Select-Dest

PSA (primal sequential alt pairs)

O(n?m}; stotage 4n + 2m. A label-correcting method.

O(mlogn); storage Sn + 2m. Uses a binary heap, label-correcting method,

A modification of S-Heap; single origin, multiple destination.

O(#*); finds shortest distances between all pairs of vertices. Performed well for

transportation problems: took 20 to 35 percent less time than L-Deque or $-Dial,

of node x, and pntr and last both represent pointers to the
candidate 2-queue Q.

For i=1 to n
Plil=5; Dli]l:==00: Q[i]:=0
Pls] :=Dl[s] :=0; Q[r+ 1] := last :=s;
Qls]:=pntr i =n+1;
Repeat
wi=Qn+1]; Qln + 1] := Qlul; Qu] := 0,
if pntr =wu, then pntr:=n+1;
if last = u, then last:=n+1;
For all w, FS(u)
if D[u] 4 a(u, v) < D[v], then
if Q[v] =0, then
if D[v] = o0, then
Ollast] = last == v;
Olvl i =n+1;
else
Qlv] := Qlpntr]; Olpntr] .= v;
if last = pntr, then last = v;
putr = v
Plv] :=u; D[v] '= D[u] + alu, v);
until Qn+1]l=n+1

The DSP algorithm represents ¢ as an unordered linked
list, The following pseudocode uses the same notation as in
L2Q.

For i=1 to n
Pli]l=s; D[i]:=o0c0; Q[i]:=0
Pls]'=D[s]1:=0; QOln+1]1:=5; Qls]:=n+1;
Repeat
min =00; {:=n+1; x:=1i;
while Qlil#n+1
if D[QU]] < min, then x:=1i;
min := D[O[il];
L= Qlil;
u=Qx]; Qlx] = Qu]; QOlul:=0;
For all v € Fs(i)
if Dl[u] + a(u, v} < D[v], then

it Q[v]=10, then Qlv]:= Qn+1];
Oln+1]1:=v;
Plv]:=u; D[v]:= Dlul+alu,v);
until Qe+ 1]=n+1

All programs use the same data structure to represent nodes,
arcs, and distances, namely, a forward star. A node is repre-
sented as an object. The fields are length (the label length
at the node}, pred (the node’s predecessor), and nodenum-
ber (the number of the node). Because of the way MODSIM
treats objects, ASK methods are necessary to change these
values at any point in the program. There is then an array of »
nodes. An arc is also represented as an object. The fields are
length (the distance from start node to end node), arcnum (the
number of the arc), startnode, endnode, and roadtype (which
may be employed later to use in a more stochastic version).
ASK methods are necessary to change the values of each arc
when read in from a data file. There is then an array of m
arcs.

The data file is arranged as follows. The beginning of the
first colunm must be preceded by a tab; otherwise, errors in
reading the data will occur. For similar reasons, every subse-
guent colunm must be separated by a tab. The first colunm is
the start node, followed by the end node, length, arc number,
and finally the road type. Because the arcs are meant to be
undirected, whereas the algorithms assume a directed graph,
the data file must be read in twice. At the second reading the
first colunm is then interpreted as the end node and the second
colunm is the start node. An example of an ArcInfo-formatted
street database for St Louis is given in Table 4.

There are also several common procedures among the pro-
grams. Because of the restrictions on an array, the procedure
CountNum is required to count the number of arcs in the
forward star of node #. Then the array for the forward star
of node 1 can be established, and the forward star can be set
up. The disadvantage to this method of setting up the forward
star is that it involves a large number of calculations and com-
parisons, which dominate the preprocessing time. However,
itis preferable to have the dynamic array sizes, which allow
for less memory use. Procedure SetupFS is very similar to
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Table 4
Sample input data structure from a St. Louis city (ArcInfo
formatted) GDT street database

FNODE TNODE LENGTH DB291895 NAME CFCC

4375 4374 0.000999 5380 1270 All
4374 4388 0.001400 5393 1270 All
4626 4375  0.012890 5714 1270 All
4388 4635  0.007723 5726 1270 A1l
4635 4645 0.000188 5738 1270 All

CountNum, except that it actually assigns arc to the forward
star of each node. FS is a two-dimensional array with inte-
gral indices, The first index refers to which node the forward
star belongs, and the second index simply numbers the arcs
contained in the forward star.

Each program uses a timer to determine how long the pro-
gram actually takes to complete. The start timer is the first
command made, and then the stop timer and time calculation
are the last commands made. The timer is used to time both
how long the preprocessing takes and how long the actual pro-
gram runs. This involves starting the timer at the beginning
of the program, stopping it at the end of the preprocessing,
computing the run time, and then using that end time as the
new start time and stopping the timer again at the end of the
program for the final run time.

The PSP program required a minor adjustment to allow it
to work with undirected arcs. It was necessary to add a third
set, USED, to mark which nodes’ forward stars had already
been examined. The lists NOW, NEXT, and USED were rep-
resented by a RankedObj. This is the same as a QueueOb,
except that the items in the list are ranked according to some
field of the object. The ASK method Rank of the object La-
beledNodes was written to order the nodes by their length
fields. The ASK method Add(Node) is used to add Node to
the list, and the ASK method Remove() returns the top Node
off the list while also deleting it from the list. The field In-
cludes(Node) returns a Boolean value to signal whether or
not Node is included in the list. The rest of the PSP program,
as well as the L2Q and DSP programs, follows the algorithms
very closely.

The performance of these algorithms was evaluated for the
city of St. Louis with the number of vertices # equal to 9105
and the number of edges m equal to 28,702. For example,
for a portion of St. Louis with 379 vertices and 996 edges,
the preprocessing took 9 to 10 seconds, whereas computa-
tion of the path using the L2Q algorithm took an average
of 0.107 second. For the complete graph of St. Louis, with
9105 vertices and 28,702 edges, the preprocessing took about
1.6 hours, and the L2Q algorithm took only 4.1 seconds to
compute the shortest path (Table 5). As seen in Table 5, the
preprocessing of the street data was the most time-consuming
part of the path planning. The actual algorithm itself is con-

Table 5
St. Louis street highway network: Execution times in seconds for
various SPP algorithms

Preprocessing L2Q PSP DSP

Subset of St. Louis city

n =379, m = 996 9.8139 0.1077 1.009 0.179
St. Louis city
n =9105, m = 28702 5776.2 4.094 582.04 13.56

siderable quicker. There are several things that can be done to
improve the preprocessing performance. The preprocessing
does not need to be performed at every run of the program,
because none of the forward star information should change.
Therefore, the preprocessing could be done a priori, the val-
ues saved to a separate file, and then those values are read
in at the beginning of each run. This would still involve ad-
ditional time, but it would be considerably less time. Also,
the FS data structure could be changed to a simpler array of
integers. The indices would remain the same, but instead of
referring to an ArcObj, it could refer to the arc number i.
Then any information needed on that arc could be referenced
through Arc[i]. This would save considerable memory space,
as well as time in reading in the values for FS once the former
idea was introduced.

4.2 St. Louis highway traffic management: Routing algo-
rithms

A related problem is to develop a method for routing traffic
through the St. Louis highway network given predicted travel
times and incident data. There are many system-optimal al-
gorithms available to use. However, we were constrained by
hardware and software requirements, which led us to use the
L2-Queve method and Dijkstra’s shortest-path method. Al-
though these are user-optimal methods, while the problem
is a system-optimal problem, these methods provide us with
traffic routing information that will be useful in optimizing
traffic flow. They will use the estimated travel times on each
arc to find the shortest paths from each travel advisory point to
each desired destination. This estimate can be updated how-
ever often is desired. This will allow for clustering of drivers
in such a way that they should not overflow the assigned
routes.

The performance was evaluated for the city of St. Louis
with the number of vertices n equal to 9 and the number of
edges m equal to 26. A picture of this network is shown in
Figure 3. Both programs used the same data structures to
represent vertices, edges, and distances, namely, a Forward
Star. A timer was again used to determine how long each
algorithm actuaily took to complete. Another timer was used
to determine how long the street data preprocessing took.
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Table 6
St. Louis highway network: Execution times, in seconds, for
various SPP algorithms*

Preprocessing DSp 120

0.06 ¢ 0

*Corresponding to the major highways de-
picted in Figure 7 with n = 9and m = 26.

The run times are given in Table 6; due to small network size
(n = 9 and m = 26), preprocessing took only 0,06 second,
and computation of the fastest (shortest) route took practically
0 seconds. The host platform used for the evaluation was a
486 PC; the algorithms were implemented using C++.

5 CONCLUSIONS

In this paper we have provided an overview of a semantic
control approach to traffic management. In our approach
to ATMS, all three major functions are incorporated into
the semantic controller. The identifier measures and/or pre-
dicts the road congestion levels and travel times and per-
forms incident detection/localization. The goal selector han-
dles street/highway traffic routing for maximum use of avail-
able network capacity. The Adapter provides driver’s support
for shortest path/time routing and steering control.

More specifically, in road traffic prediction via RBFNNs,
our results show that radial basis function neural networks
provide an efficient tool for traffic-flow prediction. The per-
formance of the radial basis function neural network depends
on the selection of centers and widths, The simplicity of
the K-means clustering algorithm, width calculation, and the
least-mean-squared algorithm for weight training make the
radial basis function neural network training and learning
more efficient and faster than both the backpropagation neu-
ral network with a tapped delay line and the Box-Jenkins
algorithm, In addition to the use of artificial neural networks
{ANNS) in system identification and parameter estimation,
there are several other areas that can benefit from ANNs. For
example, neurocontrol of uncertain nonlinear dynamic sys-
tems is one such area with potential applications to advanced
vehicle control systems (AVCSs). For a comprehensive dis-
cussion of references and applications of neural networks to
the control of nonlinear systems, we refer readers to refs. 19,
38, and 40. Some of the key issues that remain are stabil-
ity, validation, and verification of hybrid systems resulting
from incorporation of the preceding modules into AVCS. In
the past these issues have been addressed through the exten-
sive use of simulations, more recently, mathematical analysis
has been used to investigate the stability, observability, and

controllability of closed-loop systems with neurocontrollers.
Good surveys and reference material on ANNs with fuzzy
logic controllers can be found in refs. 9, 20, 28, 30, 35, 37,
and 39, Used in conjunction with classic synthesis method-
ologies and multiresolutional algorithms, ANNs and FLCs
hold great promise for the future of ATMS and AVCS.

ACKNOWLEDGMENTS

We gratefully acknowledge the helpful suggestions and com-
ments of the guest editor Dr. Azim Eskandarian and anony-
mous referees.

REFERENCES

1. Amin, S. M., Garcia, A. & Wootton, J. R. (eds.), Network,
control, communications and computing technologies for ITS,
Mathematics and Computer Modeling, 22 (4-7) (1995), 454,

2. Amin, S, M., Rodin, E. Y, Lui, A.-P,, Rink, K., Cusick, T,
Gosh, B. K., Gerhard, V., Garcia-Ortiz, A. & Wootton, J., A
semantic control approach to ITS, in Proceedings of Intelligent
Vehicles '95, Detroit, MI, Sept. 25-26, 1995, pp. 430--5,

3. Amin, S, M., Intelligent prediction methodologies in the navi-
gation of autonomous vehicles, Ph.D. thesis, Washington Uni-
versity, January 1990,

4, Bertsekas, D. P., Linear Network Optimization, MIT Press,
Cambridge, MA, 1991,

5. Billings, 8., Identification of nonlinear system: A survey, IEEE
FProceedings, part D (1980).

6. Box, G.E. P. & Jenkins, G. M., Time Series Analysis: Forecast-
ing and Control, Holden-Day, Qakland, CA, 1976,

7. Chen, §., Cowan, C. F. N. & Grant, P. M., Orthogonal least
squares learning algorithm for radial basis function network,
IEEE Transaction on Neural Nerwork, 2 (2) (1991).

8. Chen, S. & Billings, S., Representation of nonlinear sys-
tems: The NARMAX model, fnternational Journal of Control,
(1989), 1013-32,

9. Cox, E., The Fuzzy Systems Handbook, Academic Press, New
York, 1994.

10. Deo, N, & Pang, C., Shortest-path algorithms: Taxonomy and
annotations, Networks, 14 (1984), 275-323.

11. Dreyfus, S. E., An appraisal of some shoftest«path algorithms,
Operations Research, 17 (1969), 395-412,

12. Evans, J. R. & Minigka, E., Optimization Algorithms for Net-
works and Graphs, 2d ed., Marcel Dekker, New York, 1992,

13. French, R. L., Automotive Electronics Handbook, McGraw-
Hill, New York, 1995,

14, Gallo, G. S. & Pallotino, S., Shortest-path methods: A unified
approach, Mathematical Programming Study, 26 (1986), 38—
64.

15. Garcia, A., Amin, §. M. & Wootton, J. R., Inteiligent trans-
portation systems: Enabling technologies, Mathematical and
Computer Modeling, 22 (4-7) (1995), 11-81.

16. Geist, D., Semantic control in continuous systems applications
to aerospace problems, Ph.D. thesis, Washington University,
December 1990.

N R




7.

19.

20.

21.

22,

23.

24.

25.

26.

27,

28.

29,

30.

3L

32.

33.

34,

35.

36.

37.

Traffie prediction and management via RBF neural nets and semantic control 325

Girosi, F. & Poggio, T., A theory of networks for approxima-
tion and learning, also Networks and the best approximation
property, technical reports, MIT, 1989,

. Golden, B. & Magnati, T. L., Deterministic network optimiza-

tion: A bibliography, Networks, 7 (1977), 149-83,

Hunt, K., Sparaboro, D., Zibowski, R. & Gawthrop, P., Neu-
ral netwerks for control systems: A survey, Automatica, 28 (6)
(1992), 1083-1112.

Jang, J.-8. R. & Sun, C.-T., Neurofuzzy modeling and control,
in Proceedings of IEEE, (1995).

Jurgen, R. K. (ed.), Auwtomotive Electronics Handbook,
MceGraw-Hill, New York, 1995.

Kuo, L. E. & Melsheimer, S. S., Using genetic algorithms to es-
timate the optimum width parameter in radial basis function net-
works, in Proceedings of American Control Conference, June
1994,

Leontaritis, I. & Biltings, S., Input-output parametric models
for nonlinear systems, International Journal of Control, 41 (2)
(1985), 303-28,

Lirov, Y., Artificial intelligence methods in decision and control
systems, Ph.D. thesis, Washington University, August 1987.
Liu, A.-P.,, Amin, S. M. & Rodin, E. Y., Traffic flow estimation
via RBFNN, technical report 2-6-95, Center for Optimization
and Semantic Control, Washington University, 1995,

Liu, A.-P,, Amin, §, M. & Rodin, E. Y., Traffic flow modeling via
radial basis function neural network and Box-Jenkins method,
presented at the Fourth IFORS Specialized Conference on Op-
erations Research and Engineering Design, St. Louis, October
24-27, 1995,

Ljung, L., System Ildentification; Theory for the User, Prentice-
Hall, Englewcod-Cliffs, NJ, 1987.

Lubin, J. M., et al,, Lateral control of an autonomous road ve-
hicle in a simulated highway environment using adaptive res-
onance neural networks, technical report, Depariment of Civil
Engineering and Operations Research, Princeton University,
1992.

Moody, |. & Darken, C. J., Fast learning in networks of locally-
tuned processing units, Neural Computation, 1(1989), 281-94.
Neusser, S., et al., Neurocontrol for lateral vehicle guidance,
IEEE Micro, (1993), 57-66.

Pallottino, S., Shortest-path methods: Complexity, interrela-
tions and new propositions, Networks, 14 (1984), 257-67.
Park, J. & Sandberg, 1. W., Universal approximation using
radial-basis-function networks, Neural Computation, 3 (1991),
246-57.

Powell, M. J. D., Radial basis functions for multi-variable in-
terpolation: A review, presented at the IMA Conference on Al-
gorithm for the Approximation of Functions and Data, RMCS,
Shrivenharn, U.K.

Rodin, E. Y., Semantic control theory, Applied Mathematical
Letters, 1 (1) (1988), 73-8.

Ross, T. 1., Fuzzy Logic with Engineering Applications,
McGraw-Hill, New York, 1995.

Weil, R. D., Al methods in utilizing low dimensional mod-
els of differential games, Ph.D. thesis, Washington University,
September 1990,

White, D. A. & Sofage, D. A. (eds.), Handbook of Intelligent
Control: Neural, Fuzzy and Adaptive Approaches, Van Nostrand

Reinhold, New York, 1992,

38. Yager,R.R. & Zadeh, L. A, (eds.), Fuzzy Sets, Neural Networks,
and Soft Computing, Van Nostrand Reinhold, New York, 1994,

39. Yager, R. R. & Filev, D. P, Essentials of Fuzzy Modeling and
Control, John Wiley and Sons, New York, 1994,

40. Zhikowski, R., et al., A review of advances in neural adaptive
control systems, technical report ES-PRIT III, Project 8039:
NACT, Daimler-Benz AG and University of Glasgow, 1994.

APPENDIX A: BACKGROUND ON
NEUROIDENTIFICATION AND PREDICTION OF
UNCERTAIN NONLINEAR SYSTEMS

In general, traffic modeling and prediction are a special case
of system identification in which the traffic flows/densities
represent the state of a nonlinear and uncertain dynamic sys-
tem. In this appendix we provide a brief overview of ap-
plication of neural networks in modeling and prediction of
nonlinear systems,

In the past, classic methods for identifying nonlinear sys-
tems often have used static polynomial or sinusoidal nonlin-
earities with linear dynamical blocks (e.g., see Hammerstein®’
or Weiner operators and Volterra functional series”). These
provide an adequate representation for a wide class of non-
linear systems, but often several hundred parameters are re-
quired to characterize even simple problems. The disadvan-
tages in utilizing such functional series techniques are (1) ex-
cessive computational effort spent in estimating unknown pa-
rameters, (2) difficulty in interpreting the results, and (3) the
need to use special input signals, On the other hand, theo-
retical and practical applications of artificial neural networks
(ANN) have had an enormous revival in recent years. Their
use for approximation and modeling of “static” systems has
been studied extensively. From a theoretical point of view,
it has been proved that even with one layer, feedforward
ANNSs with an appropriately chosen number of units can ap-
proximate any continuous function over a compact domain,
These networks can approximate arbitrary nonlinear map-
pings, generalize, attenuate noise, cluster data, handle both
guantitative and/or quatitative data, and are applicable to mul-
tivariable systems. Neural networks have been implemented
in many real-world applications ranging from economics to
conirol engineering utilizing their celebrated properties for
estimation, system identification, and control engincering.

Although a closed mathematical theory for linear time-
invariant systems does exist, a comparable overall theory for
nonlinear systems is not available. Due to lack of models
or mathematical difficulty of suitable identification and con-
trol design procedures, nonlinear systems are often linearized
around their operating points in order to apply the linear meth-
ods. In general, nonlinear systems have been studied on a
system-by-system basis. In recent years, a number of authors
have addressed issues such as controllability, observability,
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feedback linearization, and observer design for a class of
affine nonlinear systems (see works of Tsidori, Nijmeijer, and
Knobloch). The theory is based on a differential geometric
approach and consists of generic analysis and design meth-
ods. Despite such promising work, general constructive pro-
cedures, similar to those available for linear systems, have
not been achieved for general nonlinear systems. A consid-
erable progress in nonlinear systems theory will be needed
to obtain rigorous solutions to the identification problem. In
addition to the analytical difficulties encountered with uncer-
tain and nonlinear dynamic systems even if their mathemati-
cal models are known, there are numerous systems in diverse
fields that have been only partially modeled or do not have
a reasonable model at all. Design of “universal” modules
and structures that are capable of identification, prediction,
and control remains a fundamental issue. On the other hand,
nonlinear relationships can be learned with relative ease by
ANNGs if sufficiently “interesting” measured data and enough
computing power are available. The latter requirement in the
applications of ANNs has decreased progressively as a result
of fairly rapid development of powerful computer systems in
recent years. The utilization of the learning ability of ANNs
may eliminate difficult mathematical analysis in solving sys-
tem identification and control problems where the underlying
system dynamics are complex and highly nonlinear.

Since 1990, a few papers not only have demonstrated satis-
factory results in applying the approaches of neurocontrol and
neuroidentification but also have begun to address fundamen-
tal issues such as system approximation and identification,
controllability, observability, and stability theory. Although
major results in approximation and identification of systems
using ANNs are available, only a small group of people is
actually familiar with them. Perhaps the most popular ANN
structure has been the static multilayer feedforward neural
network trained via the backpropagation learning algorithm.
Such applications involve approximation of static nonlinear
maps; in order to deal with time-varying mappings such as
the input-output mappings of a dynamic system, static ANNs
were augmented with so-called tapped delay lines at their in-
puts. With the incorporation of feedback connections and
delay elements between the units, static ANNs are made re-
current by construction. Recurrent neural networks (RNNs)
are characterized by their internal memory and thus are very
suitable for imitating the behavior of dynamic systems. In
addition to feedback connections between units, several ap-
proaches have distributed dynamic elements throughout the
network. The activation of each unit is a time-varying in-
ternal state or output of a dynamic systems. Such networks
were first proposed by Hopfield and have been rediscovered
recently as dynamic neural networks (DNNs) in the context
of identification and control of dynamic systems.

While the approximation results for the above-mentioned
networks only guarantee the existence of a set of network
parameters that allow the approximate realization of a given

dynamic system, the question of the uniqueness of this set and
whether there exists an algorithm that can actually determine
the desired parameter values has to be clarified. In the context
of dynamic systems, this involves the problem of neural iden-
tifiability and the design of appropriate parameter-estimation
algorithms, The parameter-adaptation laws not only have to
ensure the convergence of parameters to their desired values
but also guarantee the performance of the overall system.

A general single-input, single-output (SISO) nonlinear sys-
tem can be represented by the deterministic (i.e., process
noise and incidents are disregarded) discrete-time input-output
description:

yk+1) = flylk), yk—1D,...,ytk—n+1)
w(l), utk — 1), ..., 0k —m + 1))

This description is referred to as the nonfinear autoregressive
moving-average model (NARMAX).2* According to ref. 8,
the NARMAX model is a natural representation for sam-
pled nonlinear continuous-time system. It is assumed that f
is continuous, but not given explicitly. In fact, for many real
sampled nonlinear systems, their NARMAX models are very
difficult to determine, and in general, the nonlinear structure
of f is unknown. Given a finite number of measurements,
i.e., the current and delayed samples of inputs and outputs
of a system (a traffic network), one may pose the question
of whether there exists a representation consisting of a finite
number of known functions and real parameters that approxi-
mate the mapping f. Notice, however, that the approximation
capability of a given parametrized ANN does not imply the
existence of a convergent identification algorithm for the pa-
rameters of this model. Thus approximation theory provides
a pure existence result, whereas identification mainly deals
with a constructive procedure. Nevertheless, before consider-
ing the identification problem, i.e., how to find the appropri-
ate parameter values for a given set of data, the fundamental
representation problem must be addressed. Answers must be
given to the fundamental questions such as Which class of
mappings f can be approximated by which models, and how
well?

As mentioned earlier, ANNSs provide a promising approach,
where fast parallel computation using relatively inexpensive
hardware is hoped to offer substantial benefits. To reconstruct
dynamic behavior, it is necessary to store past information
about the system inputs, states, and outputs in the network.
A network must have a memory; this can be realized in one
of several ways via

1. Use of tapped delay lines in feedforward ANNs
(TDNNS)

2. Use of general recurrent ANNs as well as DNNs and
recurrent higher-order NNs (RHONN)

3. Use of RBFNNs

In our past work in identification and control of uncertain
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nonlinear systems arising in aerospace and process-control have adopted the third approach. This approach, discussed
applications, we have made use of the first two classes of in Section 2 of this paper, was motivated partially by the
ANNs. For problems of traffic estimation and prediction, we “gaunssian-like” behavior of the data.




