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System ldentification via Artificial Neural
Networks:Applications to On-line Aircraft

ABSTRACT

In this report, the neural identification problem is outlined
and the identifiability question for a general class of recurrent
neural networks is addressed. As part of the inteltigent flight
control concept program, recurrent second-order neural
networks are utilized in order to continuously identify critical
stability and control parameters during flight. Our group at
Washington University participated in Phase II, the online
learning, with neural networks that learn new information
during flight. In particular, a recurrent second-order neural
network architecture with a robust filtered error learning
algorithm was utilized to identify the dynamics of an F-15
aircraft.

While the emphasis of our work has been on the development
and implementation of online neural network estimators, we
shall also include results with and without the baseline
network. Several examples including in-flight situations are
presented and the effectiveness of the recurrent high-order
neural networks is illustrated.

INTRODUCTION

The capability of artificial neural networks to model the
behavior of large classes of uncertain nonlinear dynamical
systems within a certain accuracy is a basic requirement in
any application; such approximation guarantees are also
necessary for the application of neural networks in
identification and control of nonlinear dynamical systems.
Artificial neural systems currently gain much insight from
adaptive control theory. The recent developments in neuro-
adaptive control motivated by results and tools from robust
adaptive control theory have already enhanced the
understanding of neural on-line system identification and
control. Parameter estimation algorithms based on nonlinear
optimization and stability theory for dynamical neural
networks are presented. The theoretical difficulties in
deriving stability and convergence results for well-known
gradient-descent  schemes in  closed-loop real-time
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identification and control systems is pointed out. An
improved on-line parameter estimation algorithm based on a
Lyapunov-like approach with conditions for guaranteed
stability is presented. The robustness of the algorithm in the
presence of modeling errors is investigated.

The capability of neural network approximations of static and
continuous functions is well known; approximation theorems
with particular attention to the topology, structure,
dimensionality and quality of the network have been
addressed elsewhere in the literature. However, most
theorems have provided little constructional information and
serve as important existence results. With this as background,
dynamical/recurrent neural networks are discussed as
approximators of dynamical systems. Their application in
dynamical system identification is quite intuitive and has
proven to be very successful. Moreover, the increasing
significance of nonlinear dynamical controller designs in
nonlinear control systems raises the question of the
application of various recurrent neural networks as dynamical
controllers in nonlinear neuro-control systems. The design of
dynamical neuro-controllers in nonlinear control with
guaranteed performance has been and will continue to be of
interest in the future.

Due to rising interest in dynamical neural network models
within the control community, dynamical neural nets of
various types have been considered. Several possibilities have
been investigated, including a) static neural networks
augmented with tapped delay lines which can be seen as
intermediate recurrent network configurations; b) feedback
connections of Hopfield-type networks; ¢) feedforward
distributed dynamical neural networks, where each neuron
has a local dynamical model governed by a first-order
differential equation; and d) recurrent higher order neural
networks where in addition to local dynamics of type (c), each
unit can receive, as input, products of outputs from other
units.



NEURAL APPROXIMATION

A general single input, single output (SISO) nonlinear system
can be represented by the deterministic, discrete-time
input/output description:

k+1) = fly(k), y(k-1), .. ., y(k-n+1);
u(k), u(k-1), ..., u(k-m+1)]. (1)

This description is referred to as the nonlinear autoregressive
moving-average model (NARMAX) [1]. According to [2]-[7]
the NARMAX model is a natural representation for sampled
nonlinear continuous-time systems. The input/output
representation describes the input/output behavior of a
system. Since the input/output behavior is all that can be seen
by an external observer, its mathematical representation is of
primary importance in systems theory. It is assumed that the

function f:R™" — Ris continuous, but not given

explicitly. In fact, for many real sampled nonlinear systems
their NARMAX models are very difficult to determine; this is
in part due to the “curse of dimensionality” which would
render a high-order function intractable when a large number
of delay elements are required to accurately represent it. In
general the nonlinear structure of f is unknown; therefore a
means of approximating f is desired and necessary. Knowing
a finite number of measurements, i.e. current and delayed
inputs and outputs samples of a given physical system, one
may pose the question of whether there exists a representation
consisting of a finite number of known functions and real
parameters that approximates the mapping f. Similarly one
may seek an approximation of a continuous feedback control
law. These questions point to the upcoming approach as
relevant and important for both modeling and control. In fact,
it will emerge that neural network models can be utilized as
parametric representation structures for purposes of
identification and control.

Notice however that the approximation capability of a given
parametrized neural model does not imply the existence of a
convergent identification algorithm for the parameters of this
model, i.e. the convergence of an iterative learning algorithm
for the construction of f. In fact, the approximation theory
may guarantee the existence of a set of parameters for a
neural model such that f can be approximated, whereas the
construction of f (or better, the identifiability of this set of
parameters) is a different issue which will be discussed in the
next section. Thus approximation theory provides a pure
existence result whereas identification mainly deals with a
construction procedure. Nevertheless, before considering the
identification problem, i.e. how to find the appropriate
parameter values for a given set of data, the fundamental
representation problem must be addressed. Answers must be
given to the basic questions: which class of mappings f can be
approximated by which neural models, and how well?

NEURAL ARCHITECTURES

Neural networks are deterministic nonlinear systems
described by algebraic expressions or ordinary differential
equations. This section presents continuous-time state-space
representations of recurrent neural networks. The most

significant advances in the development of a systematic body
of transparent and constructive design principles have been
made in neural adaptive control systems. These were
reviewed in [8]. Although major results in approximation and
identification of systems using neural networks are available,
a small yet growing minority in the control community is
familiar with them. Due to the back-propagation learning
algorithm, static multi-layer feedforward neural networks,
also known as multi-layer perceptrons, have become very
popular and utilized as approximators of static nonlinear
mappings in many different applications’. In order to deal
with time-varying mappings such as input/output mappings
of a dynamical system, static neural networks were
augmented with so called tapped delay lines at their inputs
which allow them to access a constant time-frame of the
mapping at each time step, thus capturing the model given in
EQ (1). With the incorporation of feedback connections and
delay elements between units, static neural networks were
turned into recurrent architectures. Recurrent neural networks
are characterized by their internal memory and thus are very
suitable for imitating the behavior of dynamical systems.

In addition to feedback between units several approaches have
distributed dynamical elements throughout the network; such
networks have recently been rediscovered as dynamical
network models in the context of identification and control of
nonlinear dynamical systems.

Recurrent Neural Networks

While feedforward networks are static mappings between two
information domains, the structure of recurrent neural
networks incorporates dynamical behavior through feedback
connections. In practice recurrent neural networks have been
successfully applied in real-time recognition of temporal
patterns and identification of dynamical systems (see for
example {19-37]). These kind of tasks can hardly be solved by
memoryless, static networks. Figure 1 depicts a recurrent
neural network; such a network may still have a layered
structure where, in addition to feedforward connections, unit
outputs are fed back as inputs to units in previous layers. In a
fully recurrent network the layered structure is lost as seen in
the figure. Each unit receives inputs from all other units in
the network including feedback signals of its own output. The
M input units get external inputs from outside the network.
The outputs of the P output units are the output of the overall
system. Notice the special case when a input unit is also an
output unit in the same setup. The remaining

N’ =N - P~ M units represent the network’s internal
hyperstate. The state-space description of the dynamical unit
(in a Hopfield network) is given by:

N
T;ii=_xi+zwijyj+ui’ x(o).__xo;
I (10)

Y; =h(x.'),

¥ The interested reader may refer to [9]-[18] for introductory
textbooks and collections of papers on neural networks.




where U, is an external input to the unit. Obviously «, =0 for

all non-input units. The overall dynamics of this network are
described by:

Ti=-x+Wy+u, x(0)=x,,

¥=H(x, b

y=Cy,
where 7, W, x, ¥, y and u are appropriate matrices and
vectors respectively and H is the known operator that applies
the nonlinear function k4 to each of the elements of the vector
x. Notice that for a given H the triple of matrices (W,T,C)
uniquely determines the network dynamics. The state X;in
EQ (10) can be interpreted as the potential or short-term
memory activity of a biological neuron.

The term — T,.'"x,. describes the passive decay of activity at

rate — 7;_'. Indeed, from a biological standpoint the choice

of dynamical units has been affirmed in the literature as very
plausible. First-order recurrent neural network architectures
in the form of EQ (10) were first studied by Hopfield;
important results concerning the stability of such networks
have been accomplished [38], [39] and [41]. In proving the
convergence to stable states for a symmetric weight matrix
using Lyapunov’s direct method, Hopfield pointed out their
applicability as content-addressable memory (CAM). Later
on, in [41], the absolute stability of global pattern formations
was proven for a more general model with symmetric weights
including the Hopfield neurons.

Yi

Figure 2: Recurrent higher-order neural network

Recurrent Higher-Order Neural Networks (RHONN)

The structure of a dynamical unit of a recurrent higher-order
neural network is depicted in Figure 2. The dynamical
components are distributed throughout the network similar to
recurrent first-order neural networks in Figure 1. The
network has higher-order interactions between neurons,where
the input to a unit is not only a linear combination of the
components of outputs of previous units but also of their
products. Higher-order neural networks have a superior
storage capacity, which increases with the number of
connections between units [42], [43].

Stability properties for fixed weight values are studied in [44].
Recurrent higher-order networks have recently been utilized
for identification and control of dynamical systems in [45],
[28-37]. A general higher order dynamical unit of a network
with memoryless, linear inputs and N dynamical units can be
described by:

L
. d
5=—ax+ Y w, [y, a2
= el
where {l preensd ,_} is a collection of L not-ordered subsets of
{1,2,..., M+ N}, a,is a real coefficient, W, are the weight



parameters of the neural network and d & are nonnegative
integers. The order of the network is determined by
max Zd e
jely
Notice that y, =u for i =1,..., M where u,is an external
input to the overall network, such that

= [Yireerae o YatsrreosYagen ]

. a3
=ty sty (X s B(xy)]

where h are nonlinear continuous functions defined earlier.
Introducing the parameter vector:

B =[w,peew, ] (18
and the input vector of one unit:
T
d d
g{]_[y,-“,...,nyﬁ}, (15)
Jjely Jjelp

where b.‘ ,8 € RL , the mathematical description of the local
unit dynamics can be restated for i=1/,...,N as:

. T
X =-ax,+b g (16)
then introduce the network state vector x € R*
T
x=[x,,...,xN] , an
the system matrix A € RV¥
A=—diag{a,,...,aN}, (18)
the weight parameter matrix B € RV**
T
B=[b,....by] . a9)

Notice that g in EQ (15) depends on the external network
inputs and the network states, i.e. g= g(x,u). Then the
dynamical behavior of the overall system can be described by:

x= Ax+ Bg(x,u) x(0)=x,,
y=0y.

Note that the general representation in EQ (20) includes the
one of EQ (11) as a special case.

(20

Approximate Realization of Dynamical Systems

We began with the question of whether a representation exists
consisting of a finite number of known functions and real
parameters that approximates a continuous mapping f of a
dynamical system (1). Replacing the function f in EQ (1)
with a feedforward neural network, it is clear that the
resulting model can approximate the dynamical system.
Moreover, introducing a multiple input, multiple (MIMO)
system with a number of g inputs and p outputs, the

f:x — R? where K is a compact subset of R*"*"" can be

approximately realized by a feedforward neural network. This
application will be discussed further in this subsection.

In the past, classical methods for identifying nonlinear
systems have often used static polynomial or sinusoidal
nonlinearities with linear dynamical blocks, for example

Hammerstein [46] or Wiener Operators and Volterra
functional series [3]. These provide an adequate
representation of a wide class of nonlinear systems, but often
require several hundred parameters to characterize even
simple systems. The excessive computational effort required
to estimate the unknown parameters, the difficulty of
interpreting the results and the necessity of special input
signals are further disadvantages of these functional series
methods. The usefulness of these system descriptions for
identification and control purposes is therefore limited and
alternative representations are required. Neural networks
provide a promising approach, whose fast parallel
computation using inexpensive hardware is hoped to make a
difference in the future. They have already been successfully
applied by the control community, although a rigorous system
theoretic discussion of analysis and design is still in its very
early stages. In order to reconstruct dynamical behavior it is
necessary to store past information about system inputs, states
and outputs in the network. A network model must have a
memory. This can be realized in the form of delay elements.
For the first time, a systematic approach for the integration of
feedforward neural networks into traditional model reference
adaptive control of dynamical systems was presented in [22],
which initiated both a new wave of neural network
applications in control systems and, more importantly, a
theoretical discussion that intended to develop a consistent
engineering methodology for the neuro-adaptive control of
nonlinear dynamical systems recently. Narendra introduced
the concept of a tapped delay line that incorporates delay
elements at the inputs of a static feedforward neural network.
The approach is shown in Figure 3. While in the depicted
setup of a series-parallel identification model the actual plant
outputs are delayed, the parallel identification model uses the
fed back outputs of the neural network as input as seen in EQ

.

The appropriate design of tapped delay lines for the
approximation of the dynamics of a given plant demands a
priori knowledge of the plant or some physical insight (such
as the order and relative degree). Problems well known from
traditional system identification and adaptive control (see for
example [46-47]) have been encountered. Some knowledge
of the physics of the plant should make the designer of the
identification scheme able to choose a sufficient length for the
tapped delay lines such that an approximation of the plant is
possible.

First consider the series-parallel identification setup in Figure
3. In [7] it is proved that assuming that the given plant is of
approximately finite memory, there exists a model of a two-
layer feedforward neural network with tapped delay lines that
approximates the plant up to any degree of accuracy. The
approximation of dynamical systems is considered as
approximations of continuous functionals on a compact set.
Comparing EQ (1) with the setup in Figure 3 it is clear that a
two-layer feedforward neural network with delay elements
can approximate a dynamical system of finite memory. Now
consider a parallel identification approach, i.e. the network
outputs are fed back over time delays. If the identification is




off-line then approximation errors will be fed back and will
eventually add up to an accumulated error over time.

Remark 1: Notice that the model of a feedforward neural
network augmented with delays represents a simple recurrent

network. For the continuity of the discussion it is presented
here. In the next section approximation properties of more
general recurrent networks shall be treated.
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Figure 3: Tapped delay line setup

Consider a general autonomous continuous-time nonlinear
dynamical system:

x(t) = f (x(1),u(1)),
y(#) = h(x(t),u(1)),

x(0) = x,,
(21)

where x(f) € X € R" is the state, u(t) e U < R™ is the
input, y(t) € R? is the output vector, f:R" - R" is a
smooth mapping and f€ R is the temporal variable.
Introduce the new state vector X = [x,u, y]T such that

u=vy,
. dh(x,u)

y=——7—fxu)+

Jdh(x,u) (22
> —v

a‘ b
where V is the new input vector’. The augmented system
results in
x=f(xu), X(0)=Xx,,
y=Cx,
where C is a constant matrix extracting the vector y from Xx.
Thus without loss of generality it will be assumed that the
system output is linear in the states®. Furthermore assuming
that (21) is completely observable, for simplicity let C=1_,
where I, is the nXn identity matrix. Hence, neglect the

output equation and consider the system dynamics be given as
the first-order state equation:

(23)

* For simplicity the dependence on time will not be written
explicitly.

¥ Notice that dynamics in Eqn (23) are affine, i.e.
F=F(+ X7 g.(N)v, with g,(x)e R", for

i=1..,m.

x=f(x,u). 29
Before proving Theorem 1, a bit of background is needed:
Funahashi proved a theorem which guarantees the
approximate realization of continuous mappings by two-layer
networks whose output functions for the hidden layer are
sigmoidal, and whose neuron activation functions for input
and output are linear in the sense of uniform topology [48].

Theorem (Funahashi): Let ®(x)be a non-constant,
bounded and monotone increasing continuous function. Let
K be a compact subset of R” and fix an integer k =2 .Then
any map fik > R™defined by
f)=(fi(x),....f,(x))can be approximated in the
sense of uniform topology on K by k-layer feedforward neural
networks whose output functions for hidden layers are ®(x),

and whose output functions for input and output layers are
linear.

continuous

In other words, the above Theorem states that for any
continuous map f:kK — R™and an arbitrary £ >0, there
exists a k-layer network whose input/output mapping is given
by f:K‘ — R" such that I{leaxxd(f(x),f(x)) < &, where

d(.) is a metric which induces the usual topology of R™. The
class of functions for P(x) specified by the above Theorem
include sigmoidal functions. Hornik proved an analogous
result on a more abstract level by using the Stone-Weierstrass
Theorem [49]). Stinchcombe and White specify a more
general class of functions @®(x). They prove that all
functions whose mean value is different from zero and whose
L,-norm is finite for 1< p < eoare applicable [50]. Now we
shall state and prove the result:



Theorem 1 (Parallel Identification Model Approximation):
Let D be an open subset of R™"and f:D— R" be a

continuously differentiable mapping. Suppose that (24)
defines a dynamical system on D. Let K be a compact subset
of D and consider trajectories of the system on the interval

[0T] with 0<T<oo, Let f denote a two-layer
feedforward neural network of the form
f = C o(B[x,u]"). Then for an arbitrary £>0 there
exist weight parameter matrices B* and C* such that if
the smooth mapping f is replaced by f then for any
trajectory {x(¢);0<t< T}, the approximated state vector
X satisfies

max |x(0) - 2(2)| < &, @5)

where it is assumed that X(0) = x(0) € K.

Proof: Let
K, ={3.8) e | &) - (] <& (rw e K }
(26)

Notice that K, itself is a compact subset of R""and
KcKkK . where Eis the required degree of approximation.
By Funahashi’s Theorem it is possible to approximate any
continuous mapping f by a two-layer sigmoidal feedforward
neural network f on the compact set K, , i.e. for any £ >0
there exist weight matrices of appropriate dimension B¥*,
C¥* in

fx,uy=C*o(B*[xul’), @Nn
such that

max "f(x,u) - f(x, u)“ <§,. (28)

(x.u)ek,

Notice that the bias vector w is incorporated with the input
vector u. Since the state vector is fed back, the approximated
state dynamics are given by

£=C*o(B*[%,u]") (29)

where X is the approximated state vector. From the latter
and (24) the state error between approximation model and the
ideal system X = X—x is described by the error dynamics

F=C*o(B*(%,ul”) - f(x,u)
=C*a(B*[%,u]”)- C*o(B*[x,ul )+ (30)
C*o(B*[x,ul") - f(x,u).

Integrating the latter and taking the norm results in

k< [ |c* oB*ti(n), uel ) - CroB*[x(a), ue) e

+[ lc*oB*ix(o),um) - f (x(2), u(D) dr.
)

Since f(x,u) is a continuously differentiable function, it is
Lipschitz-continuous (locally Lipschitzian) on the compact
domain K, i.e. there exist a finite constant k. such that for

any (x,,u,), (x,,u,) €K,

“.f(xl Siy) _f(xz s )“ < kTGlxl - x2" +“ul ‘“z")’ (32
where Kk, =k (B*,C*¥). The Lipschitz condition is
fundamental for the existence and uniqueness of a solution of

an ordinary differential equation. It guarantees a unique
solution of the approximation model.

Assuming that (x,u) € K, for all ¢t €[0,T) and using the
approximation property (4.31), it follows
It s [)F GE@)u@) - £ (xo),ucenfdr+ e
(33)
< _[ k% (n)d7 + &,T.

Finally apply the Bellmann-Gronwall Lemma to obtain
%) < gTe . (4
Choosing €, in the above fundamental approximation
theorem as
-t

&=""r— 69

then

- £

@ )
In order to verify that the result in (36) indeed holds for all
t €[0,T], assume that (x,u) leaves the domain K, at time
t, <T,such that (x(t)),u(t,)) € JK_ is on the boundary of
K,. By carrying out the same analysis as above for
t€[0,t,], we note that the result (36) contradicts the
assumption that (x,u) leaves the domain K . at time f, < T.
Therefore (36) is true for all ¢ €[0,T]. The error between
the neural model and the physical system depends on the
approximation of the continuous mapping f and the time T.
£, decreases exponentially with the size T of the considered
time interval. This puts a very strong approximation demand
on the feedforward network. Clearly, the better the
approximation of the mapping f is, the better will be the
approximation of the dynamics (24) for a greater T

Remark 2: The approximation ability in the series-parallel
identification case can be seen from EQ (30). Since actual
plant values are fed into the neural network model the error
dynamics are:

™ Several proofs similar to the above have been used in other
problems that integrate neural networks as nonlinear functions
approximators (e.g., [45] and [52]). They rely on standard results
from the theory of ordinary differential equations, e.g. [53] or [54].



ol =lc*oB*xul) - frw]<g @1
It follows that
E@|<eT. 38

Remark 3: For a recent discussion on the reconstruction of
nonlinear systems using tapped delay lines see [51].

Remark 4: Recall the general autonomous continuous-time
nonlinear dynamical system (21); it can easily be converted
into affine form by passing the input through integrators. Let

the new state vector be X = [x,u]T. Introduce the new input
vector V such that & =v . Then the affine system dynamics

are given by
x B f(x,u) 0
il 0 + I v. (39)

Considering the class of affine nonlinear systems described by
2(1)=f(D)+2 g (Du, x(0)=x,
i=1

¥(1) = h(x),
where g;(x)€R" for i=1,...,m and affine denotes that

the control input u appears linearly with respect to the matrix
G= [8+--»8,), one can construct a recurrent neural

(40)

network model by replacing the nonlinear mappings f, G
and h by feedforward neural networks.

General Recurrent Neural Networks
In the following it will be shown the internal state of the
output units of continuous-time recurrent neural networks can
approximate a given dynamical system to any precision. One
can indeed embed an N-dimensional dynamical system into a
higher dimensional system which defines a recurrent neural
network. While [55] proves the approximation theorem for a
trajectory of a discrete dynamical system by the use of the
fundamental approximation theorem, the corresponding
continuous-time study can be found in [S6]. Recall the
recurrent neural network model given by EQ(11)

Tx=-x+Wy+u, x(0)=x,,

y = H(x),

y=0y,
The existence and uniqueness of a solution of the differential
equation (11) is guaranteed by the next theorem.

Theorem 2 (Existence and Uniqueness): Let D be an open
subset of R". Let u(t) € U < R" be a bounded input and

H:D — R" be a bounded and continuously differentiable
mapping. Let W,7€ R™ be constant matrices with
T,>0 and T; =0for i# j. Then for t €[0,00) there
exists a unique solution of the differential equation:

Ti=-x+Wy+u, x(0)=x,,
y = H(x).
Proof: By the assumption that u is bounded and H(x) is a
bounded mapping, there exist constants M, M, >0 such
that |u,.I <M, and |H,.(x)!< M for i=1...n.
Therefore for F(x,u)=W-H(x)+u there exists a

41)

constant M > 0 such that |F;|< M for i=1,...,n. Now
consider the solutions of the differential equations

T,k =-x,— M,

i

T =—x,+ M,

@i

42

which are

I~

~

x(O)=x,0e " tM-(e " 1) 43)
Thus
|x, 0] <|x ©)+ M= N,.a0)
Let N= mizlxNi.Thcn

x| <Vn N @s)

i.e. x is bounded on the existing interval of solution. Since
the right side of (41) is continuously differentiable in x, it
Lipschitz-continuous on D. Therefore there exits a unique
solution x over [0,8] provided the number & is sufficiently
small. But since x is bounded, as seen above, there exists no
finite escape time and thus the solution must exist uniquely
over [0,00).

Remark 5: “At a first glance the condition of Lipschitz-
continuity appears to be extremely restrictive, since it is
known that “almost all” continuous functions are not
differentiable  and  thus not  Lipschitz-continuous.
Nevertheless, it can be shown that differential equations with
unique solutions are prevalent in the sense “almost all”
differential equations with continuous functions f have

unique solutions." [57}

Funahashi [56] proves two theorems for recurrent networks of
the form (11) with external input u=0. While the first
theorem proves the approximation capability of a autonomous
dynamical system, the second theorem guarantees the
approximation of continuous mappings. These results are
stated next.

Theorem 3 (Funahashi) : Let D be an open subset of
R"and f:D—-R" be a continuously differentiable
mapping. Suppose that X = f(x) defines a dynamical
system on D. Let K be a compact subset of D and consider
trajectories of the system on the interval [0, 7] with
O0< T <oo. Then for an arbitrary £>0 there exists an
integer N and a recurrent neural network with n output units
and N hidden units (hyperstates) such that for any trajectory



{x(2); 0S¢ < T} of the system with initial value x(0) in K
and an appropriate initial state of the network,

max et~z < e @6

holds, where X is the internal state of output units of the
network.

Theorem 4 (Continuous Mapping Approximation): Let
fIIOT]>R" be a continuous function where
O< T <oo, Then for an arbitrary £>0 there exists an
integer N and a recurrent neural network with 7 output units
and N hidden units (hyperstates) such that

max || f () - x(t)| < £ 47
max |f (1)~ i) <e @
where X is the internal state of output units of the network.

Recently recurrent higher order neural network of the form
(20) have been discussed in the context of system
identification [45). The following theorem guarantees the
existence of an approximation of the form (20) for any
dynamical system.

Theorem 5 (Recurrent Higher-Order Neural Networks

Approximation): Suppose the nonlinear system dynamics
(24) and the recurrent higher order neural network (20) are
initially in the same state x(0) = X(0) where X is the state
of the network model. Then for any £ > Qand any finite T>0,

there exists an integer L and a matrix B* € R™" such that
sup [£(n) - x(n)| <& @)
1ef0.7)

Proof: Since the arguments are similar to the proof of
Theorem 1 only a sketch of the proof will be outlined here.
Let the sets D, K and K, be given as before. A tricky step is
to restate EQ (24) as
r=Ax+g(xu), @49
by introducing g(x,u)= f(x,u)~ Ax, where A is the
stable system matrix of the neural model (20). Then the error
dynamics are given by
X = AX + g(x,u) — Bg(x,u), (50)

where g belongs to the neural model. Integrate the error

dynamics and take the norm. By applying the triangle
inequality and Cauchy-Schwarz inequality we get:

frcoh < [l leoue) - Becau o de+
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where the norm "" for matrices denotes the Frobenius matrix
norm. By the Stone-Weierstrass Theorem it can be shown that
for any £ >0 there exits a weight parameter matrix B*
such that

ax "g(x,u) -B* é(x,u)" <§g. (52)

(51)
dr

Recall the well known result for a Hurwitz matrix A that
there exist scalars @, 8> 0 such that

le*|< Be=. (53)

Under the further assumption that g(x,u) is continuously
differentiable, it is Lipschitz-continuous with the Lipschitz
constant k.. Assuming that (x,u) € k . forall £€[0,77 it
results in

lxol<g ,BJ; e dr+ Bk, +|B "i_E E@)- e dr s4)
Now use the Bellmann-Gronwall lemma and assuming that
the given @, in (53) satisfy @ < Bk, |BH. 1f this is not
true, i.e. &> ,BkT“B ¥, simply choose a smaller & that
satisfies the condition. Since & < ¢, (53) remains true for
@ . Then

ouistar | (s5)

ks el

£
and choosing £, appropriately one can get "f (t)" < E The

final contrapositive argument to ensure that this indeed holds
for all t€[0,T] is exactly the same as in the proof of
Theorem 1.

Remark 6: Notice that in EQ (49) the mapping g(x,%) and
a corresponding nonlinear output function A(x,u) can be
replaced by a feedforward network in order to construct an
overall recurrent neural model. The approximation property
of a general nonlinear system of the form (21) using the so
constructed network is proven in [52].

Remark 7: Constructing a type of recurrent network
configuration by augmenting the static network architecture
with dynamical elements in the form of stable filters is very
common. In fact, as already mentioned for affine systems, one
often refers to known and well analyzed classes of nonlinear
systems and replaces their unknown nonlinearities by neural
networks. Thus the new system is parameterized by neural
network models with known underlying structure but
unknown parameters. This approach incorporates certain
neural network abilities and often leads to a better
understanding of the overall neural system model by applying
classical nonlinear analysis methodologies.

Remark 8: A model represents a way of predicting future
outputs of the physical system. Therefore a recurrent neural
model

i=f(Ru8), 0 =x,
5’ = h(iyuvez)y
where 6, and 6, are adjustable parameter vectors, is a one-

step-ahead predictor for the underlying system description
x=f(xu), x(0)=x,

¥ = h(x(,u).




Remark 9: The problem of approximating a nonlinear
dynamical system by a recurrent neural network has been
recently formulated as the problem of differential
approximation {27].

Interim summary: So far several recurrent neural network
architectures relevant to identification and control problems
have been presented in a continuous-time state-space
representation. The approximate realization of dynamical
systems was discussed. Parallel and series-parallel
identification models incorporating neural networks were
introduced. The role of a tapped delay line in connection with
static neural network architectures was investigated. It was
proven that a static two-layer feedforward neural network
with a tapped delay line can approximate a dynamical system
to any degree of accuracy. Several further theorems
concerning the approximation of dynamical system via
recurrent neural networks were given. The results stated
above are mainly existence results and do not provide
constructional procedures for the network topology, its
nonlinear quantities or even how to achieve the optimal
parameter settings. The latter shall be further discussed in the
next section.

NEURAL SYSTEM IDENTIFICATION

In order to understand the overall view of an identification
problem, a general setup of the neural system identification
procedure is introduced. The relevance and applicability of a
neural network model in this setup will be discussed. The
identifiability question is addressed for a fairly general class
of recurrent neural networks. A major part of this manuscript
consists of the presentation of model parameter estimation,
also known as learning rules in the neural network context,
based on results in optimization and Lyapunov stability
theory. The improvement of stability and convergence results
gained by the application of stability theory are pointed out.

The capability of a neural network architecture to model the
behavior of a large class of dynamical systems within a
certain accuracy is a basic requirement for the application of
the neural network to the identification and control of
nonlinear dynamical systems. The application of several
recurrent neural models to a general dynamical system was
established in the previous sections. In particular, only
models that incorporate feedback connections will be valuable
in identification of dynamical systems. In order to complete
the identification procedure, now that several appropriate
identification models are accessible, adaptation laws for the
parameters of the model must be found; such learning laws
must guarantee that the response of the model to an input
signal indeed accurately approximates the output response of
the real system. While the previous sections mainly presented
existence results, the construction procedure of the neural
models, concerning choice of values of model parameters
shall now be discussed.

System identifiability: formal aspects [46]

The system identification procedure consists of first choosing
either an appropriate identification model, or better, a model
set. The parameters of this model are then adjusted according
to an adaptive law such that the response of the model to an
input signal approximates the output response of the real
physical system to the same input. The latter is an estimation
procedure that selects that member of the model set that
appears to be most suitable for the purpose in question; one
picks the “best” model in the given set. The selection is
mostly performed in an iterative manner, guided by prior
information and the outcomes of previous estimation
attempts. Recall that, for example, the recurrent neural
network model (20) is specified by a triplet of matrices
(A,B,C) and the nonlinear function k. This will be denoted by

Z=2%,(A,B,C) (56)
where A is a stable matrix, B is the weight parameter matrix
and C is the output matrix. Assume that the structure of the
neural model has been chosen according to some given
identification, i.e. the nonlinear function s and the elements
of the matrices A and C have been selected and the size of the
matrix B is fixed. Notice that the weight parameters are still
to be adjusted for a specific problem. Let 6 be the parameter
vector consisting of all adjustable parameters, d, in a general
neural model. In the example, € will contain all the elements
of the matrix B. Now denote the general recurrent neural
model by its dependence on the parameter vector
X =3(6) ()]

The following definitions were introduced for general
dynamical systems in [46]). They are adapted here to the
recurrent neural network context.

Definition (Neural Model Set): Let Dy be an open subset of
R?. A neural model set I is defined as

' ={z@peD, R} )

The model set is clearly uncountable. Since a search for the
“best” model has to be conducted over the entire model set,
one can identify the parameter vector 8 as a “smooth” index
and perform the search over the parameter set (the index set).
In fact, the presented neural models X(6) are differentiable

with respect to 8. Thus the following definition makes sense:

Definition (Neural Model Structure): A neural model

structure X is a differentiable mapping from a connected,
open subset Dy of R to a neural model set "

Z:0e D, > Z(GeX*. (59)
Therefore with X, a certain model structure is selected
which determines particular models X(6) parametrized by
the vector @€ D; < R, This set of models is defined by

EQ (58). Assume a set of data vectors from the real system is
measured and given by:



2" = [y).u(1), (2),u(2),.... Y(N),u(N)], (60)
where u and y denote system inputs and outputs respectively.
Now, the problem is how to use the information contained in

the data vector z" to select a proper value @*of the
parameter vector inDy and hence a proper member

2(6%) in the model set %" most suitable to the purpose in
question. This selection mechanism is defined as follows:

Definition (Parameter Estimation Method) : A mapping
¥ > 60eD; 61
is a parameter estimation method or learning algorithm.

In the neural network context a parameter estimation method
is generally referred to as a learning algorithm.

Remark 10: Model structures are denoted by X above,
whereas a particular model corresponding to the parameter
vector @ is denoted by X(6). Such a parametrization is
instrumental in conducting a search for the “best” model. In
general two different philosophies may guide the choice of
parametrized model sets. First there are so-called black-box
model structures. They represent flexible model sets that work
with many different physical systems and in particular
without detailed knowledge of the internal structure or
physical descriptions of the modeled system. On the other
hand, there are model structures with physical parameters. It
is intended to incorporate physical insight into the model set.
The chosen adjustable parameters will make sense physically
and their number will be close to the actual, unknown number
of parameters of the real system. The presented neural model
sets clearly belong to the former black-box models.

The concept of identifiability addresses the problem of
whether the identification procedure will yield a unique value
of the parameter @, whether different values of @ can give
the same model and/or whether the resulting model is equal
to the true system. Previous work in this area has been
performed both for feedforward networks [58] as well as for
recurrent networks [59] [60]; we shall review the implications
of their work in the next subsection. In mathematical terms
the former asks if the model structure X is one-to-one. In
general  there  exist infinitely many parametric
models Z(#) and some of these may not be identifiable.

Define identifiability as follows [46]:

Definition (Identifiability): A model structure X is globally
identifiable at @ *if

X(B)=X(6*%), 6e D, = 0=6*. (62)
A model structure X is globally identifiable if it is globally
identifiable at almost all 8* € Dy .

If the neural model structure is one-to-one then it is
identifiable. Identifiability also involves the question of
whether the obtained data set is informative enough to
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distinguish between different models. The properties of the
data used in parameter estimation are in fact crucial to the
quality of the estimates. What properties must the input have
to sufficiently excite all essential dynamics of the plant? In
order to characterize process inputs the notion of persistent
excitation has been introduced in the identification and
adaptive control literature (such as in [46], [47] or [61]). In
particular, conditions have been derived for the input signals
of systems with a linear parametrization of the dynamics that
guarantee the convergence of the model parameters to those
of the true system.

It is important to point out that existing adaptive techniques
for nonlinear systems generally require a linear
parametrization of the plant dynamics, i.e. the parametric
uncertainty is expressed linearly in terms of a set of unknown
parameters. Then either through empirical studies or under
this parameter-linearity assumption the stability and output
error convergence are shown (e.g., see [22], [52], [62-63],
[641, [65)). If the parameters are nonlinearly incorporated in
the system dynamics then the question of persistent excitation
is still an active current research problem. The reader is
referred to the cited literature for a detailed discussion of the
persistent excitation problem. At this point it shall be
assumed that a persistently exciting input signal is available.

Remark 11: A significant ability of neural network models is
generalization. A network generalizes if it is able to
extrapolate information from a given set of training data to
new inputs, from the same information domain, and responds
with an output arbitrarily close to the corresponding output of
the real system. In order to guarantee the generalization
ability of the neural model, it has to be properly excited. Only
careful choice of the set of training data can satisfy this
requirement.

Input/Output Equivalence Approach to Identifiability

At this point it is clear that before actually designing an
estimation algorithm it is necessary to verify whether there
exists a unique set of values for the parameters of a recurrent
neural model that realizes a given input/output mapping at
all. Albertini and Sontag successfully addressed this problem
in [59] for a class of recurrent neural models. They showed
that there is only one way to build a network that achieves the
design objective for a given input/output behavior. In
particular, the neural “structure (weights) is uniquely
determined by function (desired i/o behavior)” and therefore
the weights of a continuous-time recurrent neural network are
uniquely identifiable from input/output measurement. The
following results are obtained from [8] and adapted to the
above definitions. The approach is based on the definition of
input/output (i/0) equivalence.

Definition (¥ -I/O Equivalence): Let two general neural
parametric models £(6) and Z(6)be given by the model

structures © and X and be dependent on the parameter
vectors Gand @ respectively. Assume there exists a



diffeomorphism @ between the state X of the model 3(8)
and the state X of the model X(6&) defined on a subset of
R" such that x = D(X). Then X(H)is V¥ -i/o equivalent
to 2(5) on D if and only if the input/output functions of
Y(6)and X(F) are identical and there exists a
diffeomorphism ‘¥ on Ds, such that &= ¥(0).

Lemma 1 [59]: If () and Z(&) are ¥ -ifo equivalent on
Dy as the domain of ‘¥ then the model structure X is
globally identifiable.

The proof of the lemma is straightforward and can be found
in the reference [59]. Now consider two recurrent neural
models T(A,B,C) " and T(A,B,T), whose units have
the same nonlinear activation function &, similar to EQ (11)
of the form:

Xx==x+y+u, x(0)=x,,
y = H(Ax), (63)
y=Cx,

where the nonlinear operator H is defined as above. The
following assumptions are made:

Assumption 1: A is invertible; T(A,B,C) is controllable
and observable in the sense of linear systems, i.e.
[BA4B...A™Bland [Cc,...cca™)] are
nonsingular [66]; all elements of AB are non-zero and no two
elements have the same absolute value;

Assumption 2: h is analytic; h'(1) = 0as A — oo,
h(0)=0, h'(0)#0, h"(0)=0and Tk >2such that

r®0) 20.

The following theorem due to Albertini and Sontag is stated
here without proof.

Theorem 6 {59]: Let the two systems X(6) = X(A,B,C)
*#and T(8) = $(A,B,C) of type (63) be given which are
of the same order N and satisfy the Assumptions 1-2. Then
I(B)is W -i/o equivalent to (&) iff there exists an
invertible matrix T, such that x = Tx, and ¥ is defined by:

T AT,
T'B,
CT,

A
B (64)
c

and

** Notice that the dependence on the nonlinear function 4 is omitted.
# Note that the vector @ contains all parameters of the system, i.e.
the elements of the matrices A, Band C.

(i) if h is odd then T=PD, where P is a permutation
matrix, i.e. its columns are permuted vectors of the
canonical Euclidean basis, and

D=diag{A,....2,}, A =%l for all i€{l,...N},
(ii) if h is not odd then T=P,

By using Lemma 1, Theorem 6 proves global identifiability of
the recurrent neural model (63). Thus the input/output
behavior uniquely determines the weights, except for a
reordering of the variables and, for odd activation functions,
sign reversals of all incoming and outgoing weights at some
units. In other words, if two recurrent networks have equal
behaviors as black-box models then necessarily they must
have the same number of units and, except at most for sign
reversals at each node, the same weights.

The result for feedforward networks, due to [58], quoted from
[65], is as follows: feedforward neural nets with a single
hidden layer, a single output node and tanh(.) for for
activation function, the neural network is uniquely
determined by its /O map, up to an obvious finite group of
symmetrices (permutations of the hidden nodes and sign
changes of all the weights associated with a particular hidden
node), provided that the net is irreducible, i.e. there does not
exist an inner node that makes a zero contribution to the
output, and there is no pair of hidden nodes that could be
collapsed to a single node without the /O map.

The above results are closely related to the geometrric theory
of nonlinear systems, and in particular to nonlinear
realization theory [67].

Parameter estimation methods (learning algorithms) for
neural networks

After the approximation properties of neural network
architectures are known and the identifiability problem is
clarified and established for a class of neural models, this
subsection will present the estimation of the unknown
network parameters. Parameter estimation methods are
known as learning or training algorithms in the neural
network community (learning refers to the biological origin of
neural networks and their significant role in the field of
artificial neural networks). On the other hand, from the
systems theory viewpoint, a learning algorithm is just a
parameter estimation method. In fact, many techniques
employed in the field of neural networks have also been
developed by the controls and optimization communities. In
the sequel both notions will be used interchangeably.

A neural network model is determined by its network
structure, its unit characteristics and the learning algorithm
for its parameters. As presented in sections 2 through 4,
neural models consist of many simple computational units
which operate in parallel. The weight parameters define the
strength of connection between the units. They are adapted
during use in order to yield optimal performance. Given a set
of inputs and desired outputs of a physical system, an
appropriately chosen and trained neural model can emulate



the mechanism which produced the data set. This subsection
presents parameter estimation methods for several neural
network models which are applicable in function
approximation as well as system identification. The
discussion covers the two branches of estimation methods
which are based on optimization theory and Lyapunov
stability theory. While the former shall only be briefly
reviewed, the main emphasis is on the application of stability
theory. The questions of stability and convergence will be
important issues.

Estimation algorithms based on optimization theory
Parameter estimation methods for nonlinear models based on
nonlinear programming techniques are well known. They can
be found in many classical textbooks about optimization
theory, statistics, identification, and adaptive control such as
[46], [68], [47], and [69,70]. A very lucid review of available
learning algorithms for feedforward neural networks and
radial basis function networks can be found in [6].

A class of learning algorithms known as prediction error
algorithms can be derived for feedforward neural networks by
adopting ideas from nonlinear system identification [4]. The
off-line version of the algorithm such as that presented in [5]
uses a quadratic form of the prediction errors e;of the

available data (60) as an optimization criterion (i.e., the cost
function) given by:

1
JO)=5520]6);6) (65

where @ is the parameter vector. The nonlinear programming
problem is to find the optimum selection of parameters &
that minimize J(€). Its minimization is usually achieved
iteratively according to parameter adaptation rule:
8 =6"" +aZ(8"™") (66)

k denotes the iteration index, ¢ is a positive design constant
(step size) and Z(8) is the search direction. The search or
adaptation direction Z(8) of the parameters is based on
information about the cost functional acquired at a previous
iteration. The most widely used on-line method is based on
the recursive implementation of the least-squares algorithm
commonly using the negative gradient vector as the search
direction. This algorithm is also known as the steepest
descent learning rule. It guarantees the convergence to at
least a local minimum of a convex cost functional. While the
convergence rate is rather slow, the algorithm can be locally
integrated into the paralle! structure of feedforward neural
networks. In order to improve the efficiency of minimization,
the negative gradient direction has been modified in other
approaches. The Gauss-Newton algorithm, also known as the
full prediction error algorithm, utilizes the Hessian matrix of
the cost functional in the adaptation law and results in a very
efficient convergence. Unfortunately, it requires great
computational power and has a centralized structure when
applied to neural networks. Moreover, the size of the Hessian
leads to an enormous memory demand for large networks.
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However, these limitations can be overcome by the parallel
prediction error algorithm described in [5]. Less frequently
the search direction is computed via conjugate-gradient,
Newton, quasi-Newton or other variations of first and second
order methods. The step size @ must be appropriately chosen
to guarantee the convergence of the iterative procedure; line
minimization, Armijo and other inexact methods have been
utilized in the past. The off-line prediction error algorithms
typically utilize gradient-descent optimization techniques and
are guaranteed to converge to a local minimum that contains
the initial parameter vector in its basin of attraction. The
corresponding on-line parameter estimation methods include:
recursive steepest descent or smoothed stochastic gradient
algorithm, full recursive prediction and parallel recursive
prediction error algorithm. It can be shown that the recursive
algorithms have the same convergence properties as their
batch counterparts.

The famous back propagation learning algorithm for
multilayer feedforward neural networks first introduced by
[71] and made popular later by [9] is a recursive
approximation of the steepest-descent algorithm. As
mentioned, the main strength of the back propagation
algorithm lies in its computational simplicity and parallel
structure in which learning is distributed throughout all units.
On the other hand, slow convergence to local minima are its
disadvantages. Nevertheless, the backpropagation learning
algorithm has proven very successful in empirical studies (for
example [12], [13]).

Several training methods have been proposed for recurrent
neural networks and most of them again rely on gradient
methods. They are more or less extensions of the back
propagation algorithm for feedforward neural networks. [72]]
introduced recurrent back propagation as a fixed-point
learning algorithm, i.e. the recurrent neural model learns
equilibria or steady states in a sense related to a content
addressable memory (CAM) for which Hopfield used the
Hebbian learning rule ([38], [39] and [40]). Werbos designed
an off-line adaptation mechanism, back propagation though
time, in [73] that can learn time trajectories. [20] developed
a real-time recurrent learning algorithm which can solve the
trajectory learning problem on-line. The dynamical back
propagation algorithm introduced in [23] relies on sensitivity
models. All these algorithms have been successfully applied
in the identification and control of highly uncertain,
nonlinear and complex systems*. In spite of the successful
studies there are some major drawbacks of the gradient-based
approaches, including the great computational effort, the need
of global information because the learning is not localized in
single units, and most importantly the inability to
theoretically derive satisfactory stability and convergence
results when the adaptation is carried out on-line. In
particular, on-line adaptation is a major concern in neural
identification and control and will be further addressed below.

%% For collections of papers on neurocontrol see for example [12-18].




In order to demonstrate the gradient descent technique, an
on-line back propagation learning algorithm for feedforward
distributed neural networks (introduced in subsection 4.5)
was derived [34,36-37]. The network contained neural with
internal feedback inside the units; these networks are placed
among the recurrent neural models. This approach avoids the
need for a tapped delay line and therefore is considerably
faster than time-delay versions of static networks. We utilized
such networks in the approximation of sinusoids, in computer
simulations involving approximation and control of a Boeing-
727 aircraft passing through windshear, and in control of an
S-10 Blazer with wind and road disturbances [28-37]). In
using that identification approach, one needs to make only
minute assumptions as to the structure of the mathematical
model. In general a detailed description of the plant is
assumed to be unknown. The linear models replace real
physical systems and generate the necessary input/output data
for the training. The plant models are more or less arbitrary
and highly nonlinear. Of course, the stable oscillating
input/output behavior of the given models is very convenient
in order to demonstrate the improved identification of the
system dynamics.

Estimation based on stability theory

Gradient learning techniques have been efficiently used as
parameter adaptation mechanisms in practice, but problems
have often been encountered in proving their stability in
closed-loop identification and control setups. This problem is
even more severe if the adaptation is carried out on-line. The
convergence of the adaptation mechanism to a global
minimum can only be assured in the case of a convex error
surface; this is a very limiting assumption. In practice,
problems are characterized by very “lumpy” error surfaces;
the convergence to a global minimum and thus the
convergence of the output error to zero can hardly be
achieved.

In order to overcome the stability and convergence problems a
group of researchers have recently avoided iterative training
procedures in favor of provable stable adaptation techniques.
The approach was previously discovered in robust adaptive
control and is now utilized for tuning of the neural network
model parameters: the Lyapunov synthesis approach (see for
example [74] or [47]). These developments have enhanced
the understanding of neural on-line parameter estimation in
the context of closed loop dynamical systems by providing a
link to adaptive control theory. With a Lyapunov-like
synthesis approach, a dynamical equation is first obtained in
terms of the error signal which includes both the estimation
and parameter error. A certain Lyapunov-like function V is
then considered whose time derivative v along the
trajectories of the dynamical system equation is made non-
positive by properly designing the adaptive law for the
adjustable parameters. The properties of V and V are then
used to establish the stability properties of the on-line
estimation scheme.

The discussion shall be continued with the derivation of a
neural learning algorithm for higher-order recurrent neural
networks presented in subsections 4.3 and 4.4. These are
based on Lyapunov's direct method (see for example [57]). It
demonstrates the procedure for developing the dynamical
error equation and choosing an appropriate Lyapunov-like
function V. The results were published in [45] and
successfully applied in the identification of a nonlinear
robotic manipulator.

Learning algorithm for RHONN:
Filtered Error Identification Model
The modeling error plays a crucial role in the design of the
learning algorithm for recurrent neural network as
identification models. The modeling error is the mismatch
between the real system and the neural network with
“optimally” chosen weight parameters. In general there will
always arise modeling inaccuracies that are mainly due to an
insufficient number of adjustable weights. Although not very
realistic, the first approach presented will assume a zero
modeling. In order to avoid a parameter drift caused by
modeling errors, the algorithm will be revised such that the
learning is robust. Given the general nonlinear system:
x=f(xu), x0)=x, 67N
the existence of a higher order recurrent neural network that
approximates (67) is guaranteed by Theorem 5. Recall the
recurrent neural model (27):
X = Ax+ Bg(x,u),

y=H(x"),
where B is the adjustable weight parameter matrix. If one
assumes that there is no modeling error, then by Theorem 5
there exists an optimal weight matrix B* such that the
unknown dynamical system (67) is exactly rendered by the
dynamical state equation:

x=Ax+B*g(x,u), x(0)=x,, (69)
Note that if by assumption the input u(t) and the state x(t) are
bounded for all 20 then g(x,u) is also bounded.

x(0) = x,,
(68)

Remark 12: Due to the identifiability discussion earlier, if
the optimal weights are not unique then B* denotes an
arbitrary but fixed element of the set of optimal weight
parameter matrices.

Now, assume that the state Xxis available for measurement
and choose the neural identifier as:

x= A+ Bg(x,u), i(0)=%,, (70)
where B is the estimate of the unknown weight parameter
matrix. Introducing the weight error matrix B=B-B*

and the dynamics of the state error X = X—x, the system
equations are described by:

F=AT+Bg(xu), X(O)=%~x%. @1
In order to derive a stable adaptation law for the weight
parameters consider the Lyapunov function candidate:
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where ¥ 2 QOis a design constant. Recalling EQ (19) (for the
weight matrix, with N=n, the derivative of V w.r.t. tis:
Vi =%"%+ 17 Y. b8,
i=l

(73)
TA

[}
=t
=

+xTBg(x,u) +% > b7,
i=1

I
=

. 1.
TAZ+Y, [b‘.'g(x,u)z,. +7b,.’b,.].
i=1

Notice in the first step above that B* in B is fixed and thus
B = B. Now it is clear that if choosing
bi ==Yy g(x,u) :Y‘Tv
or in matrix from:
B =-yg(xw) %", (15
and since A is a Hurwitz matrix as defined in EQ (18), then
Vv=3TAZ <0 (76)
Regarding EQ (72) this implies that ¥, b, =b, b € L,

i=1l...,n, (74)

ie. Xand I;: (i=1,...,n)are uniformly bounded.
Furthermore, from (71) with the remark above that
g(x,u) is bounded it also follows that X € L. Moreover,

since V is a nonincreasing function of time and bounded from
below, there exists a finite limit V__ such that

o<V, = }imV(t) <V(0). an

Since A is symmetric, the derivative of Vs

V=2%TA%, (18
with ¥ and ¥€L_then VeL_, ie Vis uniformly
bounded. The boundedness of V implies that V is
uniformly continuous in time. The application of Barbalat’s
Lemma then indicates that V() — 0. Hence by (76)
X(t) > 0. Therefore the adaptation law (75) guarantees

that the identification error converges to zero. This resuit
shall be summarized in the following theorem:

Theorem 7 (Filtered Error Model Learning): Consider the
neural identifier

1= A%+ Bg(x.u), X(0)=X,,
whose weights are adjusted by the adaptation law
B =-yg(xw) 7, (0
where 7 is the adaptation rate. Then, under the assumption

)]

of no modeling error, the neural identification scheme
guarantees the following properties:
() XandbelL_,
(i) limX(#)— 0.
1—y00
Proof of Theorem 7 follows directly from the previous
discussion and derivations.
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Remark 13: Although the error X converges to zero as the
time ¢ goes to infinity, the result does not imply that the error
dynamics are not asymptotically stable.

Remark 14: The above adaptation law does imply that the

weight estimation error B is bounded but does not indicate
by any means that this error converges to zero. As mentioned
earlier, in order to achieve convergence of the parameters to
their correct value the additional condition of persistent
excitation must be satisfied by the nonlinear regressor
function g(x,u) . The signal g(z) = g(x(r),u(t)) will
be persistently exciting if there exist positive constants &),
O, and T such that forall ¢ 20
T

al, < _[g(r)g’(‘r)drSaZIN. (81

Then in the absence of modeling errors the adaptive control
law without modification (see below) can also guarantee
parameter CONVergence, i.c.

B(t)> B* as t—oe. 82)
Obviously for nonlinear systems this condition cannot be
verified a priori.

Remark 15: Most of the existing adaptive techniques for
nonlinear systems require a linear parametrization of the
plant dynamics, i.e. the parameters linearly enter the
nonlinear dynamical equation (see also [75]). In fact, the
higher-order recurrent network model (70) is linearly
parameterized in the adjustable weight matrix.

Remark 16: An adaptive neural identifier of the form (70) is
known as filtered error identifier. This can be seen from the
first-order stable filter depicted in Figure 4 with
A=—diag{a,...,a}. The error filtering design is discussed
in detail in [75]. Once the model parameters are successfully
trained, the model input X can be replaced by its estimate x
and the training can be stopped. The criteria for a successful
training are critical, in particular if the convergence of the
parameters to their optimal values cannot be guaranteed.

Robust Learning Algorithm For Recurrent Higher-Order
Neural Networks (RHONN)

The assumption of no modeling error between the physical
plant and the neural network model in the filtered error
recurrent higher order neural network training algorithm is
crucial. The modeling error is mainly caused by an
insufficient number of higher-order terms in the neural
model. In order to accommodate for modeling inaccuracies
which can result in a parameter drift’™ i.e. the weight
parameters drift to infinity and the estimation error diverges,
the presence of modeling errors will be allowed. The
modeling error will appear as an additive disturbance in the

*** Parameter drift is an instability problem that occurs in on-line
adaptation and is very well known in adaptive control theory.




differential equations representing the system. A robust
learning algorithm is presented next.

dentification Model

-

Figure 4: Filtered error identification model

Given the nonlinear system (67). By adding and subtracting
the term Ax + B * g(x,u) the system can be restated by:
x=Ax+B*g(x,u)+v (83)
where the modeling error Vv is given by
v=f(x,u)— Ax— B* g(x,u). (84)
Note that v€ L_ because X and u are assumed to be

bounded. Let X' be a compact subset of R"*™. Since by
assumption the system to be identified is bounded-input
bounded-output (BIBO) stable and « is uniformly bounded in
time, assume that X is chosen such that (x,u)€ x for
t 2 0. The optimal weight parameter matrix B * minimizes
the modeling error v on X in the sense of the L_ -norm,

subject to the constraint "b," < M, where M, is a large
design constant, and the optimal weights for the RHONN are:

; =arg min sup (v, (85
b g|’>.|5M.- (x.u)gk‘| '| ®
Thus a bound on the network weights is introduced which
avoids numerical problems due to very large weight values
and allows the adaptation law to be modified by adding a
leakage term known as O -modification from adaptive control
(see [74]) that prevents the weight values from drifting to
infinity. Choosing the neural identifier as (70), the
identification error dynamics are given by

X =AX+ Eg(x,u) — V. (86)
The next theorem is stated from [45].

Theorem 8 (Robust Filtered Error Model Learning, [45]):

Consider the neural identifier
x = Ax + Bg(x,u), (87)
whose weights are adjusted for i = 1,...,n as follows

_ -ygxux , ||b,[[s M, )
' -rgxu)X,—oybh,, ||bi">M|‘

where ¥ is the adaptation rate and >0 is a design
constant for the leakage term —O)),. Then the robust
neural identification scheme guarantees the following
properties:

Q) X,bel,,i=1...,n,

(i1)] there exist constants A , y such that

' 2 : 2
[k dz<a+ flvol dr @9)
1] [}

The proof can be found in [45]. The above robust adaptation
rule guarantees that the output error of each dynamical unit is
bounded; and the state error is proportional to the energy of
the modeling error. If the modeling error is square integrable
then the state error converges to zero asymptotically. An
immediate corollary of Theorem 8 is:

Corollary 1: If the modeling error in the neural identification
scheme is zero, i.e. v=0, then limX(¢#)=0.
F—o0

Remark 17: These results require exact knowledge of neither
the compact set K nor the upper bound of the modeling error
V.

Remark 18: Since the O -modification causes the adaptive
law to be discontinuous, the existence and uniqueness results
of solutions to the resulting differential equation are, in
general, not applicable. Therefore [45] suggests a further
modification that results in smooth weight parameter
trajectories.

Remark 19: Notice that the modeling error (84) can also
include a bounded disturbance signal. Assume that equation
for the dynamical system is given by:



= fxu)+d(@), x0)=x,, o1
where d is a time-varying bounded disturbance signal, i.e.
there exists a finite B, >0 such that for all ¢

ldnl<B,. ©2
Then the new modeling error V is given
v=v+d. 93)

INTELLIGENT FLIGHT CONTROL

The intelligent flight control concept program [31] aims to
develop and flight demonstrate a flight control system that
can efficiently identify aircraft stability and control
characteristics of the aircraft. Then utilize this information to
optimize the performance of the aircraft. During the months
of April - December 1995 we were involved with and worked
on the joint NASA-Ames, MDA-St. Louis, TSU, and WU’s
Advanced Concept Program for Intelligent Flight Control.
Our group at Washington University participated in Phase II,
the online learning, with neural networks that learn new
information during flight, utilizing recurrent higher order
neural networks which were presented in earlier subsections.
More specifically, a recurrent second-order neural network
architecture with a robust filtered error learning algorithm
was utilized to identify the dynamics of an F-15 aircraft.

The estimated flight coefficients and derivatives are fed into
an optimal controller that maximizes the system performance.
The new control scheme uses neural networks to monitor the
operating characteristics of an aircraft on a real-time basis
and can modify the flight control to accommodate various
types of failures or damage. The flight sensor measurements
and estimates of flight coefficients and derivatives derived
from the motion equations are available for the training of the
neural network. A first approach is the application of static
pre-trained baseline neural networks that measure aircraft
performance factors which can be used to provide optimal
control. In particular, the baseline networks work as memory
elements or look-up tables for flight coefficients and
derivatives. Modeling the aircraft with other analytical
methods would result in computer code that is overly large to
efficiently function in real-time computer control of the
aircraft. A second approach is the development of online
neural networks that can learn new information during flight
in order to estimate off-nominal values or provide model
updates during failure and damage conditions.

While the emphasis of this work has been the development
and implementation of online neural network estimators,
results with and without the baseline network have been
discussed. The system architecture which incorporates a
baseline network is depicted in Figure 5.

Our task was to develop a candidate online neural network
algorithm which processed aircraft sensor data in real-time
and updated the aerodynamic coefficients for stability and
control derivatives. The modeling problems to be solved by
the neural network consist of first, to determine a correct
aircraft model when an unpredicied event occurs which
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changes the critical stability and control properties of the
aircraft, and second, to be able to update the existing neural-
augmented aircraft model by using available sensor
information to gain increased performance advantages for
flight envelope expansion. In other words, the candidate
neural network structure with appropriate learning algorithm
will identify the time-varying matrices A and B of the
linearized aircraft model x(#) = A(£)x(2) + B(H)u(t).

The estimated matrices A and B which contain flight
coefficients and derivatives will be utilized in the
computation of the controller gain of an optimal controller by
a real-time Riccati-solver'™ [32-33]. The candidate neural
system has to be capable of recognizing temporal patterns or,
more desirably, be able to fully identify the time-varying
mapping between sensor values and matrices A and B. Since
any time-varying mapping may be described by a dynamical
system, the latter is in particular the identification of the
dynamical system whose states are the flight coefficients and
derivatives driven by the given sensor measurements. The
adaptation of the network parameters will be performed
online in order to allow the instantaneous adaptation to flight
situations. Therefore the derivation of an efficient parameter
estimation algorithm is necessary that guarantees stability and
convergence of the overall system.

The earlier discussions justify the application of recurrent
higher-order neural networks to the above system
identification problem. In particular, a second-order recurrent
neural network architecture was implemented in software in
order to identify the critical flight coefficients and derivative
values using the real-time robust filtered error learning
algorithm presented in subsection 5.3.4. Identification resuits
of a flight coefficient and its derivative values are depicted in
Figures 6-9. The inputs to the networks are several measured
sensor values of the aircraft. The output trajectories of the
dynamical neural network are depicted as solid lines and the
desired outputs are shown in dashed lines. In Figure 6 the
dynamical neural network learns the deviations of the static
baseline network outputs from the desired values which are
provided by the motion equations as shown in Figure 5. The
outputs of the baseline network are plotted with dotted lines.
The dynamical network is continuously trained while the
static baseline network functions in the sense of a look-up
table. The same simulations without the use of the baseline
network are depicted in Figure 7 (i.e, no baseline network is
included and the initial learning begins with no a priori
training). Figures 8-9 depict the on-line learning of an
aircraft parameter with and without a baseline network; the
graphs correspond to actual flight data and the corresponding
relative error respectively. In these results we estimated 21
aircraft parameters; here we shall show the results for four
such parameters, these are: Cm (pitching moment), Cmdh
(partial derivative of the pitching moment with respect to

' We implemented a real-time (< 20 msec.) Riccati solver for the
optimal control of a damaged aircraft during Sept. 1994- August
1995 for McDonnell Douglas for the Intelligent Flight Control for
the Fly-By-Light Advanced Hardware System [32-33].



stabilator), Cmg (partial derivative of the pitching moment utilization of a baseline network reduces the initial estimation

w.r.t. pitch rate), and Cma (partial derivative of the pitching error of the online dynamical neural network and therefore
moment w.r.t. angle of attack, including Canard). The graphs overcomes the necessity to pre-train it with aircraft take-off
provided here, correspond to an altitude of 30,000 ft. , a speed data. For further information refer to the project report
of Mach 1.2, and a response to a lateral stick input. The [29,31].

on-line a priori knowledge
RHONN (pre-trained baseline network)

> Analytical
=-= determ.
Update el of deriv.
Ya T Ny
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Figure 6: On-line recurrent second-order neural network identification of aircraft parameters with incorporated baseline network.
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Figure 7: On-line recurrent second-order neural network identification of aircraft parameters without a baseline network
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7.0 CONCLUSIONS

The neural identification problem was outlined in a general
form applying several results from classical system
identification to the mneural network context. The
identifiability of a general class of recurrent neural networks
was established via the input/output equivalence approach by
Albertini and Sontag. Several parameter estimation
algorithms based on optimization and Lyapunov theory were
presented. An on-line learning algorithm based on the
classical backpropagation approach which had been derived
for feedforward distribute dynamical neural networks was
discussed. The algorithm allows the adjustment of the
dynamical parameters and therefore significantly improves
the behavior of the identification results for dynamical
systems. The drawbacks concerning convergence and stability
properties of gradient descent algorithms in on-line closed-
loop systems were pointed out. An improved on-line
parameter estimation algorithm based on a Lyapunov-like
approach was presented that guarantees stability and
convergence of the error to zero in the case of vanishing
modeling. The influence of the neural modeling error on the
performance of the estimation led to a modified algorithm
which guarantees robustness. All algorithms were simulated;
in particular, a recurrent second-order neural network
architecture with a robust filtered error learning algorithm
was utilized to identify the dynamics of an aircraft.
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