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Context: Generation Capacity Margin In
North America
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Context: Transmission Additions in The U.S.

30
251
20 -
O Electricity
15 - Demand
10 -
B Transmission
5 - Capacity
Expansion
O ]
1988-98 1999-09

O g ]|



Context: Generation Additions

In Western U.S.

Generatton Additions 1n the
Western Interconnection 1980-1999

o < - I - [
1980-1989 1990-1999

Source: Western Governors’ Association




Western Region:

Existing and Planned Transmission

WSCC Transmission (Existing/Planned) » Existing as of 1/1/00

Thousands of Gircull Miles  Planned: 0.23% per
year, even though load
growth Is projected to be
over 1.8% per year

M5161 kY 230KV 287-360kV  S00KY  £500KkVDC
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Context: R&D Expenditures*
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Technology Challenge for Powering

the Digital Society
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Power interruptions & inadequate power quality cause economic losses

to our nation conservatively estimated to be over $119 Billion/year. =Pl




Vulnerabilities: Power Grid Examples

November 1965 blackout in the Northeast U.S.,
which cascaded system collapse in ten states.
1967 Pennsylvania-New Jersey-Maryland.

July 13, 1977 blackout in New York City.
December 19, 1978 blackout due to voltage
collapse in France.

July and August 1996 outages in the western U.S. 2
December 1998, Bay Area black-out. NY July 7, 1999 blackout.
December 1998 ice storms in Hydro Quebec

December 1999 winter storms in France

Industry-wide Y2K readiness program identified telecommunications failure
as the biggest risk of the lights going out on rollover to 2000.

Past summers’ price spikes
Aftermath of tragic events of 11t September. S eadr=]|



EPRI/DOD Complex Interactive

Network/Systems Initiative

The Reason for this Initiative: “Those who do not

remember the past are condemned to repeat it.”
George Santayana

Two faults in Oregon (500 kV & 230 kV) led to...
— ...tripping of generators at McNary dam
— ...500 MW oscillations

— ...separation of the Pacific Intertie at the California-
Oregon border

— ...blackouts in 13 states/provinces

Some studies show with proper “intelligent controls,” all
would have been prevented by shedding 0.4% of load for
30 minutes!

... everyone wants to operate the power system closer to

Smnten, Naibsd 11, 1896

Millions lose power

Bl of PO aornira 3 Naethen Caorein sffcte; blackoats S it

August 10, 1996

the edge. It's a good idea. But to do that we should know

= where is the edge, and
= how close are we to it.
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Recent Directions: EPRI/DOD Complex
Interactive Network/Systems Initiative

“We are sick and tired of them and

they had better change!”
Chicago Mayor Richard Daley on the
August 1999 Blackout

Complex interactive networks:

* Energy infrastructure: Electric power
grids, water, oil and gas pipelines

 Telecommunication: Information,
communications and satellite networks;
sensor and measurement systems and
other continuous information flow
systems

 Transportation and distribution networks

* Energy markets, banking and finance

1999-2001: $5.2M / year —
Equally Funded by DoD/EPRI

Develop tools that enable secure,
robust and reliable operation of
Interdependent infrastructures
with distributed intelligence and

self-healing abilities
=~



EPRI/DOD Complex Interactive
Network/Systems Initiative (CIN/SI)

The Reason for this Initiative: “Those who do not -
remember the past are condemned to repeat it.” Hﬂmﬂﬁﬁmﬂ,
George Santayana %}EEF '
« Two faults in Oregon (500 kV & 230 kV) led to... ﬂﬁ% ﬁ:ﬁm
— ...tripping of generators at McNary dam wmﬁ““hw
— ...500 MW oscillations m i
— ...separation of the Pacific Intertie at the "ﬁ“ﬁ: s AN

California-Oregon border
— ...blackouts in 13 states/provinces

« Some studies show with proper “intelligent controls,” August 10, 1996
all would have been prevented by shedding 0.4% of
load for 30 minutes!

Everyone wants to operate the power system closer to the edge.
A good idea! but where is the edge and how close are we to it. (=]
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Network Centric Objective Force
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inorganic
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CIN/SI Funded Consortia

107 professors in 28 U.S. universities are funded: Over 360
publications, and 19 technologies extracted, in the 3-year initiative

U Washington, Arizona
St., lowa St., VPI

Purdue, U Tennessee,
-iIsk U, TVA, ComEd

Harvard, UMass, Boston,
MIT, Washington U.

Cornell, UC-Berkeley,
GWU, lllinois, Washington
St., Wisconsin

CMU, RPI, UTAM,
Minnesota, lllinois

Cal Tech, MIT, lllinois, UC-
SB, UCLA, Stanford

Defense Against Catastrophic
Failures, Vulnerability Assessment

Intelligent Management of the
Power Grid

Modeling and Diagnosis Methods

Minimizing Failures While
Maintaining Efficiency / Stochastic
Analysis of Network Performance

Context Dependent Network Agents

Mathematical Foundations:
Efficiency & Robustness of
Distributed Systems
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Modeling and Simulation:
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An Example- US Power Outages

US Power outages
1984-1997

/

August 10, 1996

10"

10° 10° 10/

N= # of customers affected by outage
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Information, Cyber, and

Communication Systems
I,C Threats or
\ ‘ Disturbances

Energy System S Protection

< and Control
Energy Markets Systems P, K
M, G,D
p 4
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Infrastructure Interdependencies
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Background:
The Self Healing Grid
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Background: The Case of the Missing Wing

Baliava if or rsal, Ikks one mads il back] 1has F-15 wiills hall in wrag Fasing i &
mn.l u-a-q'.plq al wlval 18 @ |1unn|1-" codsdibies g @i '|I--|::|- atda” ahcral | lowavei ha
pilal's seocass In belnging Il homs halped lo inspiie & vew poogesm Bl Asooineec sl
Systaims [Hutsbon's Flighl Dynamdcs Laboraiory atmed ol anabding hubure Bghias i.' ——
pelots bo fy adrcrall with seversly damaged contisl surllaces Ths plod of les F- 195 \

po i sd In wmsusl ways the conliol suilacos sl weos still worklng ko compan "
pale los the damaged wing. The FOL proge sme wdl inake (his sareived s (eacion M
sulamatic o the shocrall Theielore |||-|l'-; a dama :J-d alrce all will be muich saser on
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NASA/MDA/WU IFCS: NASA Ames Research Center, NASA Dryden Flight Research Center, Boeing Phantom
Works, and Washington University in St. Louis (our team at WU with my graduate students 1994-1997).
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Goal: Optimize controls to compensate for damage

or fallure conditions of the aircraft*

NASA/MDA/WU IFCS

Flight Critical
Parameters

Optimize Control
Response
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Dynamical System Estimation:
Topology of RHONN

Figure 2: Network structure with higher-order unit (d;, = 1)

— Dynamical elements in the form of feedback connections.

— Dynamical components are distributed in form of dynamical units throughout the
network.

— Higher-order interactions between neurons: the input to a unit is a linear combina-
tion of the components of outputs and their products.
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System Estimator: Unit Dynamics

L d.

i k A

Iy = —ﬂfIi+kz Wik q yj*’} I;‘(U}=Im, 1=1,H+N
=1 jel}

Yy = [yl:yia-'-:yhhyﬂ-ﬂh---syM+NIT
[u1, w9, ..., unm, h(z1), h(zs), ..., h(IN)]T

{Ii,15,...,I} : collection of L not-ordered subsets of {1,2,...,M + N}
M - number of inputs u;

N - number of dynamical units (states) x;

a; > 0 - dynamical parameter

Wik : weight parameter

dijx > 0 . integer

h(-) : nonlinear continuous functions
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RHONN Overall System Dynamics

& = Az + Bg(z,u), z(0)= zg (1)
Yext = Cz
where
d; d; d;
g = [H yj}l'r H yjﬂ: “awiy ]._.[ ijL]TERL
Jjel jEly jEl;,
v = [on, 32 ..., on]T € RN
A = —diagonal {ay, ay, ..., ay} € RMN
b = [wi, wi, ..., wi) € R
B = Eb]‘, bg, 549 EJ_NIT = RNKL
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On-Line Learning Without Baseline
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On-Line Learning Without Baseline

Network

Partial e
Derivative of
Pitching
moment w.r.t
AOA (d)*




Roll Axis Response of the

Intelligent Flight Control System

IFCS DAG 0O full lateral stick roll at 20,000 ft, 0.75 Mach, FIt 126

2
oOF .
lateral stick
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-4 ' ! ' ' ' ' '
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0 — Commanded
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-100p roll rate
deg/sec
-200 (deg )
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time [sec]
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Accomplishments in the IFCS program

 The system was successfully test flown on a test F-15 at the NASA Dryden
Flight Research Center:

— Fifteen test flights were accomplished, including flight path control in a
test flight envelope with supersonic flight conditions.

— Maneuvers included 4g turns, split S, tracking, formation flight, and
maximum afterburner acceleration to supersonic flight.

e Stochastic Optimal Feedforward and Feedback Technique (SOFFT)
continuously optimizes controls to compensate for damage or failure
conditions of the aircratft.

« Flight controller uses an on-line solution of the Riccati equation containing
the neural network stability derivative data to continuously optimize
feedback gains.

 Development team: NASA Ames Research Center, NASA Dryden Flight

Research Center, Boeing Phantom Works, and Washington University.
=2l



Self-healing Grid

Building on the Foundation:

e Anticipation of disruptive events
 Look-ahead simulation capability
 Fast isolation and sectionalization
« Adaptive islanding
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Tools: EPRI/DOD Complex Interactive

Network/Systems Initiative (CIN/SI)

Tools:

* Dynamical systems

« Statistical physics

 Information & communication science
e Computational complexity

To measure and model coupled large-scale systems including:
 Electricity Infrastructure

e Telecommunication networks

 Economic markets

* Cell phone networks and the Internet

Other complex systems

O g ]|



Wide-Area Measurement System (WAMS)

Integrated measurements facilitate system management

. . GP_S S_ynchronization
“Better information supports better & Timing §\
- and faster - decisions.” N Q

,’f,
-

. DITTI ERV lm
Disturbances —\ Unobserved N 0

System planning response

System operation

Automatic control

Observed
response

Information

Decision

MMMMMM

Configuration of BPA's Phasor

Measurement Network-1997/
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Source: DOE/EPRI WAMS project-- BPA & PNNL



Real-Time System Data
Collected from various monitors throughout the grid

Example: BPA’'s Phasor Data Concentrator
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= Disturbance records for WSCC

breakup of August 10,

1996

Malin-Round Mountain #1 KV
WSCC Breakup of August 10, 1996

Time in Seconds
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60 - —_\
59 . 005 Tacoma 230 kV - Bus Frequency Hz
(raw value-rescale by 75%)
PPSM @ Dittmer Control Center
58 Jjfh
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Tacoma Bus Frequency
WSCC Breakup of August 10, 1996
1000
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S00 7 PPSM @ Dittmer Control Center
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Source: DOE/EPRI WAMS project
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ance records for WSCC

up of August 10, 1996
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= Disturbance records for WSCC

breakup of August 10, 1996
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= Disturbance records for

breakup of August 10,

002 Kyrene bus Frequency Hz

61 - PPSM @ Kyrene substation (Phoenix AZ)
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Source: DOE/EPRI WAMS project o =4



= Disturbance records for WSCC

breakup of August 10, 1996
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EPRI/DoD Complex Interactive Networks

Use DRDs to Enhance Real Time System Operation

Use recorded data to

1. identify the type and location of
disturbances

2. determine whether multiple events have
occurred

. assess the impact of disturbances on
system

. monitor whether the system is adequately
damped

5. evaluate the needs for iImmediate control
actions or retuning control algorithms

O g ]|
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Last Episode of the TV series” Survivor”

Frequency Deviation

I
FREQDEY_MB

60.075 A

50.050

B0.025

£50.000

Marrow Band Freg.

59.975

59.950

59.925

21:45 21:50 21:55 22:00 22:05 22110 22115 22:20 22:25 22:30 2235
3 Thu My 2001 Time EDT 05-03-2001 19:00:00 to 05-03-2001 23:00:28 @ 1 Sample Per Second

Source:Jim Ingleson of NYISO and Joe Chodﬁ@'?'




Disturbance ldentification using

Dynamic Recorded Data

o 47 disturbance (out of several hundreds)
events recorded at Northfield Substation In
New England Power System were analyzed

« Feature extraction — frequency deviation,
frequency derivative, and power flows

» Clustering algorithm based on frequency
deviation and frequency derivative features
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Disturbance

Frequency (Hz) | | L LOSS Of Close by
; | | generation

e Estimate how
much generation
IS lost from
tracking system
frequency

Frequency (Hz)

0 5 10 15 A 25 %0
Time (sec)
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Islanding

Oscillations
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Disturbance Feature Extraction

Disturbance Frequency Frequency Line flow
Loss of nearby | Negative Steep Large
generation

Loss of remote | Negative Moderate Negligible
generation

Loss of load Positive Moderate Detectable
Line trip close to | Negligible Steep Large
DRD

Oscillations Negligible Small oscillations
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Clustering Algorithm — separate

disturbance classes by hyperplanes

100 &
g B '« C, —loss of nearby
oo el T - generation
E
'E 50+ | G, 5@:; *q;’"{ﬁ - o C2 — loss of remote
S0, % _ generation
5150 B M ¢, |+ C,—loss of load
2200 i -« C,—linetrip
T R » C;— oscillations
LEE 1 4

-3001

_E—E?ED =100 —5; 0 20 100

Frequency change in mHz

* Markers show recorded data =Pl



Decision Tree for Disturbance Identification

af
1. xﬂf -I—(d{:) < 10

Yes I No
MNoisy
|
Yes | | No
3.£<—60 4. Af >0
at
| |
Yes I No Yes I No

Line b. Oscillatory frequency Loss of 6. Af af < 54
trip (C4) between 0. 25 to 2 Ha? load (Cz2) - dt
Yes I
Y Oscllla.tlons No1sy Loss of nea.rby
7. == — JSfmin 15
(05) da.ta. § ! = generation ()

Yes
Possibility of Loss of remote
multiple disturbances generation (Ca)
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Disturbance Event Analyzer

Eve nt An alyzer Thiz event occured on Sunday, 24-May-1998 at 3:15:51.6114. Provide additional event description in the box below:

Load Event (.rwc file)
1w File: | rrthil 55k, R/ C 60.035

ear | 1998

Save .mat FiIEI Load .mat FiIEI

matFiles | 24-Map-1998at3_15

60.03 —

60.025 |-
Plot
60.02
avies o] [Feaerey <]
Frequency Domain 60.015 m /\ A
ecimale L'ata “ 60.01

start time n end time m B
Spectral Estimation 60.005 /
Power Spectral Density
hulitaper Method — -
ule W alker Method
59.995 - -

(H2)
I
\

Frequency

[e)]
o

fleteciion Fillers

Butterwarth Bandpass Filter 59.99 |
order/2 “

frequency [Hz) m 59.985 ‘ ‘ L ! :
o . 0 5 10 15 20 25
faentification Maibods

Time (sec
Calculate ERA [ICLEIN] 25 | (sec)
M aximum: 600255 Minimum: 59.9899 Hange: 0035566
Calculate Promy

Selected Modes 0 Time Domain
Load File Frequency before event was 60.0096 Hz Frequency after event was 60.0111 Hz Frequency change was 0.0015483 Hz

Beta [Mw/0.1 H
Hyperplane Calculate Beta eta [ 2) m First swing frequency zlope waz -33_494 MilliHertz/sec
L/0 Generation - m Calculate Generation Change | REELEEUELNRELLEN L] “

Frequency range during event [Hz]

L/0 neaiby generation
L/0 remate generation Event Classification

L/0 load Ozcillations in the power system about 029064 Hz. Use Prony analyziz to determine damping information.
Line trip




Modeling: Power law distributions

Power system

p=1

model

10*

10°

10°



Power Law Distributions: Frequency

& Impacts of major disasters

Hurricane and Earthquake Losses 1900-1989
Flood Losses 1986—-1992
Electric Network Outages 1984-2000

10 times E_ 101 =
peryear — Floods
- — =7
o _.
= — Data© Wi,
L ata Aug. 10, 1996
Once %5 100 &= B
ayear . _ g 2000 When?
8 8 N % % How large?
> | Earthquakes %%
Z D=-041 S Hurricanes
Once per 101 = .
decade _g — Lt S D =-0.98
© — A,
= - 5
E f—
Once per 810-2 | 1P | L L LIILI O il T T | 1 1| s
century 1 10 100 1,000 10,000

Loss Per event (million 1990 dollars)
c=~r2l






Cyber Threats to Controls

Perceived Threats to Power Controls

Reglay
Repudiaton
Eavesdronping
Orereal of Service
Flasausersds
Spood

Informmnation Leaksge
Icgtmale Lise
Intarcept!Altar

Indiscretion
Authorizalion Wealelkon
Irstegrity Wealaton

Bypassmng Controls

0 & 10 15 20 25 an a5 40 A5

P e
Source: EPRI, Communication Security Assessment ercanl of Survey Reas anis

for the United States Electric Utility Infrastructure,

EPRI, Palo Alto, CA: 2000. 1001174. EPE'



Prioritization: Security Index

General

1. Corporate culture (adherence to procedures, visible promotion of better security,
management security knowledge)

2. Security program (up-to-date, complete, managed, and includes vulnerability and risk
assessments)

3. Employees (compliance with policies and procedures, background checks, training)

4. Emergency and threat-response capability (organized, trained, manned, drilled)

Physical

1. Requirements for facilities (critical list, inventory, intrusion detections, deficiency list)
2. Requirements for equipment (critical list, inventory, deficiency list)

3. Requirements for lines of communications (critical list, inventory, deficiency list)

4. Protection of sensitive information

Cyber and IT

1. Protection of wired networks (architecture analysis, intrusion detection)

2. Protection of wireless networks (architecture analysis, intrusion detection, penetration
testing)
Firewall assessments

3.
4. Process control system security assessments (SCADA, EMS, DCS
Y Y ( ) =Pl



Assessment & Prioritization: A Composite Spider
Diagram to Display Security Indices

Human Factors

System Restoration 10.00
9.00

Interedependencies With Fuel Supply \

Process Control System Security Assessments
(SCADA/EMS/DCS)

Firewall Assessments and
Penetration Testing

Protection of Wireless Networks (Architecture
Analysis, Intrusion Detection, Penetration Testing, etc.)

Protection of Sensitive Information

Requirements for Lines of Communications [Eriiical/
List, Inventory, Deficiency List)

Security Program (Up-to-Date, Complete, Managed, and
/ Includes Vulnerability and Risk Assessments)

Corporate Security Culture (Adherence to Procedures,
Visible Promotion of Better Security, Management
security knowledge)

Employees (Compliance With Policies and Procedures,
Background Checks, Training, etc.)

Emergency and Threat Response Capability

(Organized, Trained, Manned, and Drilled)

Real Time Monitoring

System Estimation and Visualization

} Requirements for Facilities (Critical List, Inventory,
Intrusion Detections, Deficiency List)

Requirements for Equipment (Critical List, Inventory,
Deficiency List)
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Complex Interactive Networks:

Precursors detection, Protection,
Resilience, and Graceful Degradation

Failure Propagation on Grid




Complex Interactive Networks

Failure Propagation on Grid — Topology & Probability
1 . . . .
0.9]
0.8f
0.7(
0.6]
0.5(
0.4f
0.3f
0.2f
Yied ° L.

0 0.2 0.4 0.6 0.8 1

Density =P




Multi-Resolutional Modeling: The US. Power Grid

Simplified models|

= AN

L ow-resolution
model

!

MODEL
EDUCTION

REFINEMENT

e \/ariable levels of details

* Lines, loads, generators are dynami

Detailed models

) e |



Multi- Resolutlonal I\/Iodellng

 Variable levels of detalls
e 15,000 utility-owned generators

* Highly interconnected

* Lines, loads, generators are dynamic
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At this level, dynamic models include
the swing equations

mz& + D@CS@ = PF; + Z bz’j Sin((ig — 5,?)
J




Fast Simulation

Original system
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Cascading fallures

1845
1.848

1.764

c &

o L
@ ﬁw,
= > 0
= —_ O

C O
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= =
— .nnvm
(o
LL O @

2.594

2.574
P. A. Parrilo, S. Lall, F. Paganini, G. C. Verghese, B. C. Lesieutre, J. E. Marsden, 1998



GPS

Satellite

LEO

Satellite

Internet

Intranet

a a a a
C 8
—_ -~ T~
- ~
-
// ? \\\
z Information o
7 V= 2 N
7 |Failure Sensing \ Vulnerability \\
/ Analysis Assessment \
— | =
—1 U T - 1
= =
// Self Healing \\ \
/ V4 Strategies N |7 N \
(\ N
| =] \ '
Strategy
Deployment

O g ]|



Integrated Protection and Control

Information and
Communication Systems [_I
I,C Threats or
Disturbances
A

Power System S Protection
and Control

Electricity Markets Systems P, K

M, G, D

_ Y

Human Agents H
e =4



Transient
Stability

Anjigels

Alore|(1oso

Vulnerability Regions
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Integrated Infrastructure Protection and

Control via Multi-Agent Systems

Vulnerability Hidden Knowledge/Decision

Assessment Failure Reconfiguration exchange
Agents Monitoring Agents Agents

DELIBERATIVE LAYER

Restoration

Agents
Event

Identification Planning

Agent
Agents

Trlggerlng Events

Even
Update Model Ch ck
Consistency

Controls

Plans/Decisions

Com
Int

COORDINATION LAYER

Events/Alarms +

-~ Inhibition Signal --

Controls ration
- ‘s

Power System

=4
AN
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Intelligent Adaptive Islanding

-2l



EPRI's Reliability Initiative-- Sample Screen of

Real-time Security Data Display (RSDD)

s Realtime Security Data Display

IEPE' Selected Map: | MERC
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Infrastructure Security R&D:

Response to 9/11

 Impact: Our security, quality of life,
national and international economy

« Response: An integrated & coordinated
program for meeting the security needs of
the electric industry

 Focused R&D involving end-to-end:
— Risk assessment & management
— Prevention, Mitigation & Recovery
o Customer Support Initiatives
— Vulnerability Assessments
— Regional information sharing programs
— Procedures development support

Contacts: Dr. Massoud Amin & Dr. Karl Stahlkopf



Aftermath of 9/11;

Steps Toward Ensuring Security

 EPRI’'s Electricity Infrastructure Security Assessment
considers six broad areas:

— System-Wide Vulnerability Assessment

— Grid Security

— Cyber and Communications Threats

— Distribution System, Disaster Mitigation and Recovery
— Generation/Environment

— Power Markets
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EPRI’s Electricity Infrastructure

Security Assessment

 Two volumes:

— Vol 1: out to 18 months

— Vol 2: 18 months to 5 years
* Purpose

— To provide a preliminary assessment by EPRI of
potential terrorist threats to the electricity system,
along with some suggested countermeasures

 Emphasis

— How advanced technologies can be used to protect
critical infrastructures

— Physical security issues are left to individual utilities
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Bigger picture: Research challenges to

develop fundamental solutions...

e Development of advanced C3 (Computers, Communications,
& Control) networks overlay the power network,

e Knowing what is happening- Satellite-based WAMS

 Understanding what constitutes a problem- Dynamic
Stability Analysis, visualization tools

e Understanding the “true” dynamics soon enough to do
something about it- Faster analysis, look-ahead simulation,...

 Determining what actions could solve the problem-
Contingency plans, and risk management

 Implementing the solution- Control devices/systems;
alternate path options
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... require basic research to develop

fundamental solutions...

* Intelligent sensors as elements In real-time data base;
sensor interface to multi-resolutional models? Metrics?

* Increased dependence on Information systems (e.g.,
software as the glue among various subsystems/tasks)

*Dependability/robustness is the key; V&V remains a big
challenge

*Effect of market structures, distributed generation, other
new features on above issues

Designing/Evolving a robust system - Complexity,
distributed sensing, control and adaptation
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“... not to sell light bulbs, but to create a network of

technologies and services that provide illumination...”

P PGS Bl LT WEET BRg 1] HE WIS T P A

The Energy Web:

“The best minds in electricity R&D
have a plan: Every node in the
power network of the future will be
awake, responsive, adaptive, price-
smart, eco-sensitive, real-time,

AL

flexible, humming - and :
Interconnected with everything Beac MET s o
else.” Ther# 8 A Futur™ For art Power -

Far 150

-- Wired Magazine, July 2001

http://www.wired.com/wired/archive/9.07/juice.html
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