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Context: Generation Capacity Margin in 
North America
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Context: Transmission Additions in The U.S. 

0

5

10

15

20

25

30

1988-98 1999-09

Electricity
Demand

Transmission
Capacity
Expansion



Context: Generation Additions 
in Western U.S.

Source: Western Governors’ Association



Western Region: 
Existing and Planned Transmission

• Existing as of 1/1/00

• Planned: 0.23% per 
year, even though load 
growth is projected to be 
over 1.8% per year



Context: R&D Expenditures*
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Technology Challenge for Powering 
the Digital Society

Cost in 
$/kW-hrElectricity Reliability

(in “9”s)
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Stand-alone
Steam Generation

Interconnected Central 
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Grid plus 
Diesel, UPS, 
etc.

Ultimate 
Power 
System? 

? How do we 
make the leap 
to the next 
generation?

Power interruptions & inadequate power quality cause economic losses 
to our nation conservatively estimated to be over $119 Billion/year.



Vulnerabilities: Power Grid Examples

• November 1965 blackout in the Northeast U.S., 
which cascaded system collapse in ten states.

• 1967 Pennsylvania-New Jersey-Maryland.
• July 13, 1977 blackout in New York City.
• December 19, 1978 blackout due to voltage 

collapse in France.
• July and August 1996 outages in the western U.S.
• December 1998, Bay Area black-out. NY July 7, 1999 blackout.
• December 1998 ice storms in Hydro Quebec
• December 1999 winter storms in France
• Industry-wide Y2K readiness program identified telecommunications failure

as the biggest risk of the lights going out on rollover to 2000.
• Past summers’ price spikes
• Aftermath of tragic events of 11th September.



• Two faults in Oregon (500 kV & 230 kV) led to…
– …tripping of generators at McNary dam
– …500 MW oscillations
– …separation of the Pacific Intertie at the California-

Oregon border
– …blackouts in 13 states/provinces

• Some studies show with proper “intelligent controls,” all 
would have been prevented by shedding 0.4% of load for 
30 minutes!

• … everyone wants to operate the power system closer to 
the edge.  It's a good idea.  But to do that we should know

where is the edge,  and
how close are we to it.

EPRI/DOD Complex Interactive 
Network/Systems Initiative

August 10, 1996

The Reason for this Initiative: “Those who do not 
remember the past are condemned to repeat it.”
George Santayana 



Recent Directions: EPRI/DOD Complex 
Interactive Network/Systems Initiative

Complex interactive networks:

• Energy infrastructure: Electric power 
grids, water, oil and gas pipelines

• Telecommunication: Information, 
communications and satellite networks; 
sensor and measurement systems and 
other continuous information flow 
systems

• Transportation and distribution networks

• Energy markets, banking and finance

1999-2001: $5.2M / year —
Equally Funded by DoD/EPRI

“We are sick and tired of them and 
they had better change!”
Chicago Mayor Richard Daley on the 
August 1999 Blackout 

Develop tools that enable secure, 
robust and reliable operation of 
interdependent infrastructures 

with distributed intelligence and 
self-healing abilities



• Two faults in Oregon (500 kV & 230 kV) led to…
– …tripping of generators at McNary dam
– …500 MW oscillations
– …separation of the Pacific Intertie at the 

California-Oregon border
– …blackouts in 13 states/provinces

• Some studies show with proper “intelligent controls,”
all would have been prevented by shedding 0.4% of 
load for 30 minutes!

EPRI/DOD Complex Interactive 
Network/Systems Initiative (CIN/SI)

August 10, 1996

The Reason for this Initiative: “Those who do not 
remember the past are condemned to repeat it.”
George Santayana 

Everyone wants to operate the power system closer to the edge.  
A good idea! but where is the edge and how close are we to it.
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Network Centric Objective Force

Direct Fire 
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CIN/SI Funded Consortia

• U Washington, Arizona 
St., Iowa St., VPI

• Purdue, U Tennessee, 
Fisk U, TVA, ComEd

• Harvard, UMass, Boston, 
MIT, Washington U. 

• Cornell, UC-Berkeley, 
GWU, Illinois, Washington 
St., Wisconsin 

• CMU, RPI, UTAM, 
Minnesota, Illinois

• Cal Tech, MIT, Illinois, UC-
SB, UCLA, Stanford

107 professors in 28 U.S. universities are funded: Over 360  
publications, and 19 technologies extracted, in the 3-year initiative

- Defense Against Catastrophic 
Failures, Vulnerability Assessment

- Intelligent Management of the 
Power Grid

- Modeling and Diagnosis Methods

- Minimizing Failures While 
Maintaining Efficiency / Stochastic 
Analysis of Network Performance

- Context Dependent Network Agents

- Mathematical Foundations: 
Efficiency & Robustness of 
Distributed Systems
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Modeling and Simulation:
An Example- US Power Outages 
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Infrastructure Interdependencies
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• Critical system components
• Interdependent propagation pathways and degrees of coupling
• Benefits of mitigation plans



Background:
The Self Healing Grid



Background: The Case of the Missing Wing

NASA/MDA/WU IFCS: NASA Ames Research Center, NASA Dryden Flight Research Center, Boeing Phantom 
Works, and Washington University in St. Louis  (our team at WU with my graduate students 1994-1997).



Goal: Optimize controls to compensate for damage 
or failure conditions of the aircraft*

NASA/MDA/WU IFCS



Dynamical System Estimation: 
Topology of RHONN



System Estimator: Unit Dynamics



RHONN Overall System Dynamics



Architecture
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Roll Axis Response of the 
Intelligent Flight Control System 
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Accomplishments in the IFCS program

• The system was successfully test flown on a test F-15 at the NASA Dryden 
Flight Research Center:
– Fifteen test flights were accomplished, including flight path control in a 

test flight envelope with supersonic flight conditions.  
– Maneuvers included 4g turns, split S, tracking, formation flight, and 

maximum afterburner acceleration to supersonic flight.
• Stochastic Optimal Feedforward and Feedback Technique (SOFFT) 

continuously optimizes controls to compensate for damage or failure 
conditions of the aircraft.  

• Flight controller uses an on-line solution of the Riccati equation containing 
the neural network stability derivative data to continuously optimize 
feedback gains. 

• Development team: NASA Ames Research Center, NASA Dryden Flight 
Research Center, Boeing Phantom Works, and Washington University.



Self-healing Grid
Building on the Foundation:
• Anticipation of disruptive events
• Look-ahead simulation capability
• Fast isolation and sectionalization
• Adaptive islanding



Tools: EPRI/DOD Complex Interactive 
Network/Systems Initiative (CIN/SI)

Tools:
• Dynamical systems
• Statistical physics
• Information & communication science
• Computational complexity

To measure and model coupled large-scale systems including:
• Electricity Infrastructure
• Telecommunication networks
• Economic markets
• Cell phone networks and the Internet
• Other complex systems



Wide-Area Measurement System (WAMS)
Integrated measurements facilitate system management

“Better information supports better 
- and faster - decisions.”
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Real-Time System Data
Collected from various monitors throughout the grid

Example: BPA’s Phasor Data Concentrator



Tacoma Bus Frequency
WSCC Breakup of August 10, 1996
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Source: DOE/EPRI WAMS project



Malin-Round Mountain #1 MW
WSCC Breakup of August 10, 1996
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breakup of August 10, 1996



BCH Ingledow MW
WSCC Breakup of August 10, 1996
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WSCC Breakup of August 10, 1996
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Kyrene Bus Frequency
WSCC Breakup of August 10, 1996
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WSCC Breakup of August 10, 1996
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EPRI/DoD Complex Interactive Networks
Use DRDs to Enhance Real Time System Operation

Use recorded data to 
1. identify the type and location of 

disturbances
2. determine whether multiple events have 

occurred
3. assess the impact of disturbances on 

system
4. monitor whether the system is adequately 

damped
5. evaluate the needs for immediate control 

actions or retuning control algorithms



Last Episode of the TV series“Survivor”

Source:Jim Ingleson of NYISO and Joe Chow (RPI)



Disturbance Identification using 
Dynamic Recorded Data

• 47 disturbance (out of several hundreds) 
events recorded at Northfield Substation in 
New England Power System were analyzed

• Feature extraction – frequency deviation, 
frequency derivative, and power flows

• Clustering algorithm based on frequency 
deviation and frequency derivative features



Disturbance 

• Loss of close by 
generation

• Estimate how 
much generation 
is lost from 
tracking system 
frequency
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Disturbance Feature Extraction

Disturbance Frequency 
change

Frequency 
derivative

Line flow 
change

Loss of nearby 
generation

Negative Steep Large

Loss of remote 
generation

Negative Moderate Negligible

Loss of load Positive Moderate Detectable

Line trip close to 
DRD

Negligible Steep Large

Oscillations Negligible Small oscillations



Clustering Algorithm – separate 
disturbance classes by hyperplanes

• C1 – loss of nearby 
generation

• C2 – loss of remote 
generation

• C3 – loss of load
• C4 – line trip
• C5 – oscillations

* Markers show recorded data



Decision Tree for Disturbance Identification

• Developed based 
on disturbance 
classes
(f in mHz) 

• Presently applying
neural network techniques
for identification



Disturbance Event Analyzer
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Power Law Distributions: Frequency 
& impacts of major disasters
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Cyber Threats to Controls

Source: EPRI, Communication Security Assessment 
for the United States Electric Utility Infrastructure,
EPRI, Palo Alto, CA: 2000. 1001174.



Prioritization:  Security Index

General 
1. Corporate culture (adherence to procedures, visible promotion of better security, 

management security knowledge)
2. Security program (up-to-date, complete, managed, and includes vulnerability and risk 

assessments)
3. Employees (compliance with policies and procedures, background checks, training)
4. Emergency and threat-response capability (organized, trained, manned, drilled)

Physical 
1. Requirements for facilities (critical list, inventory, intrusion detections, deficiency list)
2. Requirements for equipment (critical list, inventory, deficiency list)
3. Requirements for lines of communications (critical list, inventory, deficiency list)
4. Protection of sensitive information

Cyber and IT
1. Protection of wired networks (architecture analysis, intrusion detection)
2. Protection of wireless networks (architecture analysis, intrusion detection, penetration 

testing)
3. Firewall assessments
4. Process control system security assessments (SCADA, EMS, DCS)



Assessment & Prioritization: A Composite Spider 
Diagram to Display Security Indices
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Complex Interactive Networks:
Precursors detection, Protection, 
Resilience, and Graceful Degradation

Failure Propagation on Grid
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MODEL
REFINEMENT

MODEL
REDUCTION

Simplified models

Detailed models  

Low-resolution
model

• Variable levels of details

• Lines, loads, generators are dynamic

Multi-Resolutional Modeling: The U.S. Power Grid



• Variable levels of details
• 15,000 utility-owned generators
• Highly interconnected
• Lines, loads, generators are dynamic

Multi-Resolutional Modeling



The system can be modeled
at many levels of detail



At this level, dynamic models include
the swing equations



Fast Simulation

Original system

Reduced system



Cascading failures
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Integrated Protection and Control

Power System  S
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Integrated Infrastructure Protection and 
Control via Multi-Agent Systems
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EPRI’s Reliability Initiative-- Sample Screen of 
Real-time Security Data Display (RSDD)



Infrastructure Security R&D:
Response to 9/11

• Impact: Our security, quality of life, 
national and international economy 

• Response: An integrated & coordinated 
program for meeting the security needs of 
the electric industry

• Focused R&D involving end-to-end:
– Risk assessment & management
– Prevention, Mitigation & Recovery  

• Customer Support Initiatives
– Vulnerability Assessments
– Regional information sharing programs
– Procedures development support

Contacts: Dr. Massoud Amin & Dr. Karl Stahlkopf



Aftermath of 9/11:
Steps Toward Ensuring Security

• EPRI’s Electricity Infrastructure Security Assessment
considers six broad areas:
– System-Wide Vulnerability Assessment
– Grid Security
– Cyber and Communications Threats
– Distribution System, Disaster Mitigation and Recovery
– Generation/Environment
– Power Markets



EPRI’s Electricity Infrastructure 
Security Assessment
• Two volumes:

– Vol 1: out to 18 months
– Vol 2: 18 months to 5 years

• Purpose
– To provide a preliminary assessment by EPRI of 

potential terrorist threats to the electricity system, 
along with some suggested countermeasures

• Emphasis
– How advanced technologies can be used to protect 

critical infrastructures
– Physical security issues are left to individual utilities



Bigger picture: Research challenges to 
develop fundamental solutions…

• Development of advanced C3 (Computers, Communications, 
& Control) networks overlay the power network,
• Knowing what is happening- Satellite-based WAMS
• Understanding what constitutes a problem- Dynamic 
Stability Analysis, visualization tools
• Understanding the “true” dynamics soon enough to do 
something about it- Faster analysis, look-ahead simulation,...
• Determining what actions could solve the problem-
Contingency plans, and risk management
• Implementing the solution- Control devices/systems; 
alternate path options



… require basic research to develop 
fundamental solutions…

• Intelligent sensors as elements in real-time data base; 
sensor interface to multi-resolutional models? Metrics?  
• Increased dependence on information systems (e.g., 
software as the glue among various subsystems/tasks)
•Dependability/robustness is the key; V&V remains a big 
challenge
•Effect of market structures, distributed generation, other 
new features on above issues
•Designing/Evolving a robust system - Complexity, 
distributed sensing, control and adaptation



The Energy Web: 

“The best minds in electricity R&D 
have a plan: Every node in the 
power network of the future will be 
awake, responsive, adaptive, price-
smart, eco-sensitive, real-time, 
flexible, humming - and 
interconnected with everything 
else.”

-- Wired Magazine, July 2001
http://www.wired.com/wired/archive/9.07/juice.html

“… not to sell light bulbs, but to create a network of 
technologies and services that provide illumination…”


