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Abstract—In this report, we consider the part of our work which concerns the approximation of
nonlinear dynamic systems using neural networks. Based on a new paradigm of neurons with local
memory (NNLM), we discuss the representation of control systems by neural networks. Using this
formulation, the basic issues of controllability and observability for the dynamic system are addressed.
A separation principle of learning and control is presented for NNLM, showing that the weights of the
network do not affect its dynamics. Theoretical issues concerning local linearization via a coordinate
transformation and nonlinear feedback are discussed. For illustration of the approach simulation
results for nonlinear control of an aircraft encountering wind shear on take-off is presented.

Keywords—Neurocontrol, Dynamic neural networks, Nonlinear control, Aircraft control.

1. INTRODUCTION

Theoretical and practical applications of multilayered artificial neural networks {ANNs) have
experienced an enormous revival in recent years; their use for approximation and modeling of
“static” systems has been extensively studied. From a theoretical point of view, it has been
proved that even with one hidden layer, ANNs with an appropriately chosen number of units can
approximate any continuous function over a compact domain [10-12].

Although mathematical theories for linear time-invariant systems are well understood, a com-
parable overall theory for nonlinear systems is not available. Nonlinear systems are studied on a
system-by-system basis (cf. [13,14]). In recent years a number of authors have addressed issues
such as controllability, observability, feedback stabilization, and observer design (cf. [15-19]). In
spite of such attempts, general constructive procedures similar to those available for linear sys-
tems have not been achieved for nonlinear systems. Considerable progress in nonlinear system
theory will be needed to obtain rigorous solutions to the identification and control problems.

*The work of the authors affiliated with the Center for Optimization and Semantic Control was supported in part
by AFOSR under Grants No. 890158, F49 620-93-01-0012, and F49 620-96-1-0151. Earlier versions of this work
have been reported in references [1-9].
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Figure 1. Representation of general SISO discrete-time dynamical system. The
term d corresponds to a unit delay (z~1).

In comparison, nonlinear relationships will be learned with relative ease by ANN if sufficiently
“interesting” measured data and enough computer power are available. As a result of the fairly
fast development of powerful parallel computing systems in the last years, the drawbacks of the
latter in the applications of ANN have been progressively decreasing. The significance of ANN
concerning nonlinear control systems has been demonstrated by recent research publications, e.g.,
the two collections [18,19], and briefly reviewed in [20]. Since 1990, a few papers have not only
demonstrated satisfactory results in applying approaches of neurocontrol, but also related the
theories of classical and modern control systems to ANNs. Fundamental issues such as systems a
approximation and identification, controllability, observability, and stability theory have been
addressed. While major results in approximation and identification have already been estab-* o
lished, the latter issues are still in a very early stage. Indeed, the lack of rigorous mathematical
representations of neurocontrol systems is a main drawback for the further development of the
research in neurocontrol. The most significant advances in the development of a systematic body
of transparent and constructive design principles have been made in Neural Adaptive Control
Systems (NACS). These were recently reviewed in [21].

ANNs are viewed as a subset of mathematical algorithms, not an alternative to them; they allow
development of data-based models permitting system development based on learning instead of
tweeking. Such models have enormous potential as building blocks in tomorrow’s computational
world. Data-based systems show great promise for solving problems that require learning and
adaptation during use. Many ANN applications are motivated by new universal approximation
theorems showing that some ANNs work better than Taylor series and regression analysis.

More recent developments include the use of ANNs for identification and approximation of
dynamical systems [1-12,22]. These networks contain dynamic elements either in the form of
neuron output feedback (recurrent neurons) or inclusion of an internal memory which preserves
the state history of the unit. The use of such local memories becomes necessary for identification
of dynamical systems with higher, unknown orders [22). Stability issues of such networks are
discussed in [23,24]; their superior storage capacity has been investigated in [25,26].
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Farotimi et al. [27] provided a weight synthesis technique based on optimal control theory
for dynamic neural networks. Gori et al. [28] presented a backpropagation (BP) algorithm for a
particular class of dynamic neural networks where some processing elements have a local feedback,
and applied this class of neural networks to the problem of speech recognition. Gherrity [29]
derived a learning algorithm for a recurrent neural network which is described by a system of
coupled differential equations. Willis et al. [30] discussed advantages of a neural network estimator
for feedback process control.

Perfetti [31] considered the effect of positive self-feedback on neural networks, and showed
that binary output can be guaranteed with finite sigmoid slope such that nonbinary solutions
become unstable. Sudharsanan and Sundareshan [32] proposed a descent procedure as a learning
rule to minimize the error between the stable equilibrium points of the network and the desired
memory vectors. Sato et al. [33] discuss their work on an adaptive nonlinear pair oscillator
with local connections used for speech synthesis. See [34] for a discussion of stability issues for
asymmetric dynamic neural networks. Mckelvey [35] presents a method for developing controllers
for nonlinear systems based on an optimal control formulation. The network was trained with
the back propagation algorithm where examples of optimal controls previously calculated with a
differential dynamic programming technique were used. Werbos {36] and Yamaguchi [37] present
overviews of neurocontrol and fuzzy logic formulations for aerospace applications. For collections
of papers on neurocontrol see [18,19]; the important properties of ANNs in control are:

(1) their ability to approximate arbitrary nonlinear functions;

(2) parallel processing which provides fault tolerance and can be implemented in hardware;
(3) capability to learn and adapt to a changing environment;

(4) perform data fusion on both quantitative and qualitative data; and

(5) ready application to multivariable systems.

One appealing feature is the potential of neural nets to provide a generic “blackbox” represen-
tation for nonlinear models; this has led to investigation of the approximation capabilities of
neural nets. An important question is that of system identifiability [38]; i.e., can a system be
“adequately” represented via a given model structure?

To answer this question, several researchers have developed theories and algorithms based on
adaptive control system identification. For dynamic plants a delay line is used and past output
values of the plant are provided as inputs to the neuroidentifier. If the static and dynamic
effects are inseparable, a general neural network model is used where past inputs as well as past
outputs are fed as inputs to the neuroidentifier. The number of delays can be obtained either
from the characteristics of the plant (e.g., order of the transfer function, if available) or from
prior knowledge, experimentation, or physics of the problem [39-41]. Most of these approaches
are based on replacing the traditional systems identification/controller described for example in
adaptive control literature [38,41-43} with a neuroidentifier or neurocontroller.

In [40}, Billings et al. considered the identification of nonlinear systems. A feedback neural
network was trained to model the unknown nonlinear system, i.e., to minimize the error between
the output of the network and the output of the actual system. The past inputs as well as the
past outputs were fed through a delay line (Figure 1). Several topics were discussed in [40]. They
are:

(i) network complexity;

(ii) node selection;

(iii) prediction and the effects of noise;

(iv) biasedness; and

(v) model validation test.

Thorough discussion and numerical simulations are given regarding these issues. It has been
shown that while it is easy to train a neural network which predicts well over the estimation
set, this does not necessarily mean that the network provides an adequate description of the
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underlying mechanism which generated the data. The authors claimed that it was difficult to get
definite analytical results in this area, but the modal validity tests introduced there did appear to
provide a useful metric of the network performance. An interesting observation of their approach
is that the inputs to the neural network can contain lagged external inputs and lagged outputs
of the neural network. In fact, without using lagged external inputs and lagged outputs of the
network as inputs to the neural networks, the performance of the network would deteriorate.

In [41], four models of discrete-time plants were used in the identification problem. They are
as follows.

MobeEL 1. .
n—
vk +1) =Y ay(k —9).
i=0
MobeEL II.
m—1
Yp(k+1) = flyp(k), yp(k = 1), gp(k —n+ 1)) + Y Biu(k — ).
=0
MobEL III.

Yp(k +1) = flyp(k), yp(k — 1), ..., yp(k — n + 1)] + glu(k),u(k — 1),... yu(k —m + 1)].
MoDEL IV.

wp(k +1) = flyp(k), ok — 1), up(k = n + Dsulk),ulk — 1), .., ulk — m + 1),

where [u(k), yp (k)] represents the input-output pair of the single-input/single output (SISO) plant
at time k, a;, 8; are unknown model parameters, and f(.) and g(.) are differential functions (in
Model IT and III, f : R® — R, and in Model IV, f : R*+™ — R, and g : R™ — R). It is
not difficult to show that Models I, II, and III are special cases of Model IV. Model IV is the
analytical representation of the neural network in Figure 1.

In our approach the “internal information” of the network is parameterized as a control system;
the goal has been to represent the identifier and the controller in terms of this information and
thus integrate two types of dynamic neural network architectures into controllers. Suitability of
feedforward architectures with dynamic neurons for identification and control of dynamic systems
has been shown; several important issues concerning controllability, observability, and feedback
linearizability of such neural models are also investigated.

2. PRELIMINARIES

2.1. Approximation via Feedforward Artificial Neural Networks (FANN)

FANNSs can approximate the continuous mapping f: R™*" — R of an input-output discrete-
time description of the nonlinear system (2.1). The representation of a general SISO plant is
depicted in Figure 1. Similarly a continuous feedback control law can be approximated.

y(k+1) = fly(k),y(k —1),...,y(k = n +1); w(k),u(k = 1),...,u(k —m +1)]. (2.1)

Approximation theory for ANNs states conditions under which a parameterization of a network
guarantees the existence of a uniform approximation of the function f.

Generally FANN are known as a compact mapping (2.2) between two information domains
where p is the number of input and ¢ is the number of output patterns. In the following important
existence theorems of a uniform approximation of f on K are presented.

K—-R, feC KcmRpmtan (2.2)

The Weierstrass’ Theorem says that a function f : [a,b] = R can be uniformly approximated
by a sequence of polynomial {p,(x)}. The Stone-Weierstrass Theorem states that the general
properties of approximating functions are not intrinsic to polynomials.
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THEOREM 1. KOLMOGOROV'S THEOREM. Any function continuous on the unit n-dimensional
cube E™(E = [0,1]) can be represented in the form

2,+1 n
f@r.ma) = > x| D u(Es) | (2.3)
i=1 =1

it where x; and ¢;; are real C° functions of one variable.

Kolmogorov’s Representation Theorem guarantees the exact representation of every contin-
uous function as a superposition of a finite number of continuous functions of one variable.
Hecht-Nielsen applied Theorem 1 to FANN and stated Kolmogorov’s Mapping FANN Existence
Theorem (cf. [44]).

THEOREM 2. HECHT-NIELSEN’S THEOREM. Given any continuous function f : [0,1]* — R™,
f(z) = y, f can be implemented exactly by a two-layer' FANN having n units in the input layer,
(2n + 1) units in the hidden layer and m units in the output layer.

In contrast to the existence theorems presented so far, Kurkova in [45] introduced an approxi-
mation version of Kolmogorov’s Theorem. She determined the form of the functions used in the
ANN, and furthermore proved that any continuous function can be approximated arbitrarily well
by a three-layer FANN with sigmoidal transfer functions.

THEOREM 3. KOURKOVA’S THEOREM. Let n € N withn > 2, 6 : R — £ be a sigmoidal
function, f € C°(E™) and € € R. Then 3k € N and staircase-like functions x;, ¢:; € S(0) such
that V(z1,...,z2) € E

k n
flan,ma) = x| D dislzs) || <e (24)
-1 \4=1

where S(0) is the set of all staircase-like functions of the form Ele a;0(biz + ¢;).

In addition to, the problem of the existence of an approximation of f the problem exists of
interpolation of the continuum f(X) from a finite number of sample pairs (Ux, Yx) € K x R,
k= 1,...,s. Refer to [13] for a brief discussion of this. Basic FANN models are the sig-
moidal model (2.5) and the Radial Basis Function (RBF) network (2.6). According to the
Stone-Weierstrass Theorem both network structures are suitable for uniform approximation of
an arbitrary continuous mapping.

N
yizzaijo’ (b;l;vU-i-dij), i=1,...,q, a.'j,bgj eER, b,'j ERpm+qn’ (2 5)
Jj=1 .

= [y(k—l),...,y(k—-n); u(k——l),...,u(k——m)]T

n .
yi=Za,-jg (ﬂg_—__cLll)’ i=1,...,q (2.6)
i=1 e

The above theorems can be summed up as follows: suppose we want to map any real n-
dimensional vector to any other real vector of dimension m; the only constraint we will place on
the mapping is that the components of the input vector will all be scaled to lie in the closed unit
interval; there is no such constraint on the output vector. Theorems 1 and 2 state that any con-
tinuous function of n variables can be computed using only linear summations and nonlinear (but
continuously increasing) functions of only one variable; and that a three-layer FANN with contin-
uously increasing nonlinearities can compute any continuous function of n variables. Theorem 2

1The number of layers of a ANN refers to the number of layers of weights.
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states that a multilayer FANN exists which, instead of providing an approximation, can perform
exact mapping. Furthermore, the network will have n neurons in its input layer, m neurons in
its output layer, and 2n + 1 neurons in its middle layer. Theorem 3 extends these results via
using sigmoidal nonlinearities. However, the above theorems do not indicate how weights in the
network should be selected or how sensitive the output function is to variations in the weights.
There are several mechanisms for automating the learning algorithm for adjustment of weights
in the multilayered networks. The learning mechanisms can occur in either a supervised (desired
outputs are known, and are included in the learning rule) or an unsupervised (network is not told
a priori what to learn; it must instead discover similarities among the input patterns) fashion.
Back propagation is a supervised learning rule which feeds the error back through the network
after every complete presentation of training input patterns. Typically, the transfer function for
the two hidden layers and the output layer is sigmoidal; the learning strategy for the training
process utilizes back propagation.

The back propagation algorithm adapts the weights using a recursive procedure starting at the
output nodes and working back to the first hidden layer. The weights are adjusted by

wij (t +1)= w,'j(t) + U(sz‘,',

where w;;(t) is the weight from a hidden node (or an input node) i to a node j at time t; x; is
either the output of node 7 or an input; 7 is the gain term (learning rate) between 0 and 1, which
represents the speed of convergence; and §; is an error term for node j. If node j is an output
node with an actual output y;; then

65 = yi(1 — y;)(d; — yj),
where d; is the desired output of node j. If node j is a hidden node, then
8 =z;(1—x;) Y (Srwin),
k
where k is over all nodes in the layers above node j. Convergence may become faster if a
momentum coefficient « is added, and weight changes are given by
w.-j(t + 1) = Wjj (t) + 776]'1'1' -+ a[w,-j(t) - wij(t - 1)]

The BP algorithm is perhaps the most widely utilized technique for training FANNs to approx-
imate static functions. As pointed out earlier, recurrent (dynamic) NN structures are required
when approximating dynamical systems.

3. NETWORKS WITH LOCAL MEMORY NEURONS (NNLM)

A mathematical representation of an input-output relationship for a neuron can be written as
=i (u,lc’j,...,u:j’j) , kez, 3.1)

where the y’s and u’s are the outputs and the inputs respectively. Also, Z is the set of positive
integers, the subscript k denotes the time step k, and the superscript j denotes the j*! neuron.
A typical form for f7 of (3.1) can be written as

v =s; (Z w,-ju;'g') ) (3:2)
i=1

where s; is a sigmoidal function, and the w;;’s are the synaptic weights.
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The quantities yi,u,lc’j yooe ,u;:" 7 are the outputs of and inputs to the neuron at time step k,

respectively. Also, z~! denotes the backshift operator and sj"1 denotes the inverse of the acti-

vation function for the neuron j. The output 3, of a neuron with local memory (NLM) can be
written as

VL= (a" s W)+ ) wiw? ) , (3.3)
i=1

where a7 is a scalar whose value represents the dynamics in neuron j, ¢/ is another scalar, and
the w;;’s are the weights of connection from other neurons to neuron j. By setting a’ = 0 and
¢ = 1, we immediately obtain the conventional input-output relationship for the McCulloch-
Pitts neurons. It follows that the input-output relationship of a conventional neuron is actually
a special case of that of an NLM.

An alternative and more informative input-output representation of an NLM can be given by
introducing an internal state variable xj

n; A
xi =alz]_, +Zwij“;éj,yi = 5j (Cjwi)» keZ, (34)
=1

from which (3.3) can be derived easily. The system equation (3.4) is called the node system. Again
setting a¥ = 0 and ¢/ = 1 in (3.4), we obtain the input-output relationship of a conventional static
neuron.

Yk Ykt

Figure 2. A simple special case of neural networks used for identification.

The advantage of the representation (3.4) over the representation (3.3) is apparent by intro-
ducing the internal state x}c The system (3.4) actually has the standard state equation and
output equation familiar to control scientists. For convenience, we still adopt the same name,
“state equation”, for the z equation. The role of a? in (3.4) is clear from the familiar control
theory. For example, a necessary condition for the node system to be asymptotically stable is
that the a’’s lie inside the unit disc in the complex plane. Even though the state equation in (3.4)
is linear and time-invariant, the output equation is nonlinear, which complicates further analysis.
Although we may assume that s; is linear, which is the case in part of our following analysis, we
shall generally consider s; to be nonlinear, e.g., a commonly used sigmoidal function.



72 S. M. AMIN et al.

Let us now examine a simple special case of the network shown in Figure 2. The network has
two inputs, one hidden layer with two hidden neurons and one output neuron.
The input-output relationship of the network shown in Figure 2 is described by

Yk = S2[was $1(woz uk + W12 Yr-1) + was 51 (wos Uk + w1z Ye_1)], (3.5)

where s1(.) is the activation function for the hidden layer and s2(.) is the activation function for
the output neuron. We have assumed that the activation functions for the input neurons are
linear. If we further assume that the function s,(.) is linear, then (3.5) becomes

Yk = 82wy Uk + Wy Y1, (3.6)

where w,, = waq Wwog + W34 Wo3, Wy = W4 W1 + w34 wy3. Next, let us assume that the number of
inputs to the NLM in equation (3.3) is one for simplicity. Then, we have the following equation
for this special NLM
yk = 8 (a5 (yk-1) + cwuy), (3.7
where we only keep the subscript k and have dropped all other superscripts and subscripts
for simplicity. Comparing equation (3.7) with equation (3.3), we readily see the similarity of
our models to those in [40,41]. The common point for these representations is: the past history
information of the network is used. This is because the dynamics are incorporated in the network.
Having defined the basic structure for an NLM, we can now construct a neural network whose
elements are NLMs. We shall denote the NNLM with m inputs, n hidden nodes and p outputs
by Npm.n,p- For simplicity, we only consider the single-input and single-output (SISO) system in
this section. The generalization to the multi-input and multioutput (MIMO) system is straight-
forward. Meanwhile, the input to the network has generally arbitrary values.

A general structure for NNLM is shown in Figure 3. The state equations ar
0

xp =a%Q_, + ug,
node 0: 0 0.0
vi =50(c%}),
zp =atzh_, +wiyd,
nodel,...,noden—2: ; i )
Y =sz(cxk), 1=1,2,...,n -2,
-1 _ n-1,n-1 n—2 1
g =at Ty 4+ 3 waigg,
noden—1: nt.n—1
e =ss(c" P,

where the afs are scalars representing the dynamics of the i** node system, the s;’s are the
activation functions, which are generally sigmoidal functions, and the wy;’s are the synaptic
weights for the path connecting adjacent layers.

Assuming for a moment that the activation functions S0, 82, and s3 are all linear, and defining
the state-variable vector x; by x§ = [z2,..., x?"l], we can represent the node system in a more

concise form by
Xx = Azp_; + Buy,

vk = Cxg, (3.8)
where
al 0 0 o 0 0
wyy c®al al 0 0 0
A= : : : . i I
Wy(n—2) c” a® 0 0 s a™? 0
%G worctal wogc?a? ... Wyn—g)c"~2a""2 qn-1
BT = [1 wypc® - W1(n-2) c® fi] ,
C=[0 0 --- 0 1],

n—-2
a= E Wi Woq Co c.

i=1
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Yk

Figure 3. General structure of NNLM.

Equation (3.8) represents a linear state and output equation with the transfer matrix being a
lower-triangular one. By assigning a* (for 0 < i < n—1) in A, we can alter the dynamics in (3.8).
Assuming that a"~! £ a® for i =0,...,n — 2, we define the quantity a. as follows:

n—2 Ci
Qe = Z Wii ’UJQ,'ﬁ. (39)
=1 et —a

The quantity a. plays a key role in our subsequent discussions. As mentioned in the beginning
of this section, Ny, 5, denotes the NNLM with m inputs, n hidden nodes, and p outputs.

4. CONTROLLABILITY AND OBSERVABILITY

The basic issues of controllability and observability for the system (3.8) will be discussed in
this section. For discussion of controllability and observability, interested readers may refer
to [46]. Basic definitions of controllability and observability are as follows: A system is said to
be controllable at time ¢y if it is possible to transfer the system from any initial state z(¢o) to any
other state in a finite time interval via the use of an unconstrained control vector.

A system is said to be observable at time t¢ if, with the system in state z(tp), it is possible to
determine this state from the observation of the output over a finite time interval. We provide
the following theorem; for the proof of Theorem 1, also see [5,6].

THEOREM 1. Suppose that
(i) wi; #0 for all 4,7,
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(ii) ¢t #0 for all 1,
(iii) a. £ 0 and a, < oo.
Then, the system (3.8) is completely controllable, if and only if, the following inequalities hold:

at £ al fori #j, 1,7=12,...,n—1. (4.1)

Proor. Sufficiency. We shall prove sufficiency by using the Popov-Belevitch-Hautus rank test
(see [47]). Let A; be defined as follows:

Ay =[sI - AB]

s —a® ] ] 0 0 1
~wjy1 c?a® s—al 0 0 0 wyy @
—awyz2c?al 0 s —a? 0 0 wig @

—Wy(n_z)c®a® 0 0 s—an-2 0 Wi(n—2)

—a% —woy ctal  —wog c?a? —Wa(n-2) " 2a""2 g—gn-! a

Obviously, A; has rank n if s is not an eigenvalue of 4;. For s = a® and if a® # a* for i > 1,
multiplying the last column by a° and adding it to the 1%t column yields

a 0 0 0 1
0 a%-—a! 0 0 wy @
A2 = : . : : y
0 0 0 0 Wy(n—2) °
0 -—wyctal ~wyc?a? a® — gn! a

which has rank n.
For s = a® and if a® = a* for some i, deleting the n*® column of matrix A; yields a matrix As:

[ 0
—wq1c? a®
-—Wi2 Co a°

Az = .

0,0
—Wy(n-3)C @
-a%

After elementary transformations are performed on the matrix As, its last row becomes [0,0,...,
0,%,0,...,0]. Then, performing another series of elementary transformations on the resulting

matrix yields the following

[ a® 0
0 a-a
A=
L 0 0

which has rank n.

—wW21C

1

0
—al
0

0
141

0

2

—Wy2C" QA

—a

i—-1

2

—Wo(p—g) 2

a® — git+l

0
0
0

aO — an-2
an—2

aO — an——2

1
w1 CO
w2 C0

Wi(n-2) e
a

07

=]

-
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For s = a*(1 < i < n — 2), deleting the n*® column of A, yields

ra 0 0 0
0 at — al 0 0
| al’ — al—l
i A5 -
| 0
5 0 0
!
| L0 —woictal —wogc?a? ~wa(i-1y ¢t~ tat?
| 0 0 0 1]
0 0 0 wuco
0 Wi c°
0
Wigi+1) €
at — aitl Wy(i42) &0
: : at — a™2
—wo; Ci ai —Wa(i+1) ci+1 ai+1 _w2("~2) cn——’.’ an—2 a i
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After performing a series of elementary transformations, it is not hard to show that the rank

of the matrix is again n.

For the case s = a™"!, deleting the n*h column of A; and performing one elementary transfor-

mation on A, yields

a1 0 0 0 1
0 a*l—qal 0 0 wy1c®
A= | .
0 0 0 a1 — gn—2 Win—2) ¢
0 ~wyctal —wyc?a? ~Wa(n—z) "2 a2 a

Again, performing another series of elementary transformations on Ag, one obtains

an1 0 0 0 1
0 a*l—-al 0 0 w11 &
A’I = S : : y
0 0 0 a™ ! —a™? wyp_g®
0 0 0 0 de
where d. is
G, = acc®a™ L. (4.2)

Therefore, A7 has also rank n.

Necessity. Necessity is proved by contradiction. Letting at = o’ for some i # j, t,j =
1,2,...,n — 1 yields a matrix A# which has rank less than n. [ |
REMARKS. It is easy to see from the proof that the condition a® = a'(1 € i <n—1)is allowed.
Thus, the system is still controllable even for repeated eigenvalues a® = o' for some i between 1
and n—1. Notice that an_1 # a; for i = 0,...,n—2 is only a sufficient condition for the theorem.
The following example shows that the assumption may not be necessary.
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Considering a case where n = 2, we have the state equations

zp =a’2)_; +u, (4.3)
zp =a'zi_; +wnfal_,, (4.4)
yr =clzi. (4.5)

This system is controllable regardless of what the values of a® and a! are. Thus, letting a° = a!
= constant, we still have a controllable system. A similar result regarding the observability of
the system is obtained.

THEOREM 2. Suppose that
(l) Wij # 0, for all i,j,
(ii) ¢t #0, for all 4,
(iii) a. # 0 and a. < co.
Then, system (3.8) is completely observable if and only if the following inequalities hold

at #£adl, fori#j, 4,j=12,...,n—1. (4.6)

PROOF. Necessity and sufficiency can be proved again by using the Popov-Belevitch-Hautus rank
test, namely, by checking the rank of the matrix [CT (sI - A)T]7. Similar arguments lead to the
conclusion of this theorem, with the only difference being that the column transformations are
changed to corresponding row transformations. ]

REMARK. The result on observability of the systems holds only under the assumption that the
activation functions of all node systems are linear.

Based on the analysis on controllability and observability, we have the following.

THEOREM 3. Suppose that

(1) all activation functions s; are linear,
(ii) Wij 7é 0, for all ’l:,j,
(iil) c* # 0, for all i,
(iv) a. # 0 and a, < oo,
(v) @t #a, fori +# j.
Then, any strictly proper SISO linear system with real and nonrepeating eigenvalues can be
realized by an Ny,,_2,1, where the a*’s are the eigenvalues of the system.

PROOF. Because system (3.8) is completely controllable and observable, the transfer function
C(sI — A)™'B has no pole-zero cancellation between its numerator and denominator. Since
the order of the denominator polynomial is n, it represents a typical nth-order rational transfer
function. |

We give an example for the case n = 4. The matrices A and B in this case are

a® 0 0 0 1
0,0 1 0
wyic’a a 0 0 wic
A= 2 , B=["M"10 Cc=[0 0 0 &),
wizC Q) 0 a 0 wWi2C
% wactal wopc?a? a3 a

where @ = wa; ¢! wy1 ¢® 4+ w2 2 wy ® and the transfer function is

03(b383+b232+b13+b0)
(s —a% (s —al) (s —a?) (s —a3)’

7%y
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and
b3 = a,
by = —a(a® + a! + a?) + a®® P wiz wyg + &' Pt wiy wor +a°4,
by = (a®a? + a®al + ala?) — (a® +a')a® ® Fwiawae — (a® + a®)al c® ¢t wy; wa
—a%al ? 2 wypwog — a®a?é,
by = —a a®ala?+alata?c® ¢ wy2 W2 + aala®clct w1 Wt + alata?clc? w2 W3,

Thus, by properly choosing w11, w12, W21, w2, We can realize a fourth-order linear system. A
block diagram for the realization is shown in Figure 4.

0
Xk
xy C ™%
2
X§ o
X
Xk kel
X
w—» B s Kt
Xk-1
3
Xk

Figure 4. Linear system representation of order four.

In what follows, we shall discuss the effects of the weights on the overall performance of the
system. So far we have shown that some of the entries of matrices A and B in (3.8) contain the
weights of the network. This seems to imply that the weights could affect the dynamics of the
system. However, this turns out not to be the case. In fact, the transfer function (4.7) tells us
that the weights of the network will affect only the numerator of the system and do not affect
the eigenvalues of the system. In general, we have the following

d(s;w,a,c)
Mo (s —as)’

where W = (Wi;)nxn, 8 = (a%...,a"1), ¢ =(c%¢!,...,c" ) and d(s; w,a,c) is a polynomial
of order n — 1 whose coefficients are the linear combination of entries of matrices w, a, and c.
This property will be formally stated as follows.

Transfer Function = (4.8)

PROPERTY 1. The dynamics of the system will not be affected by changing the weights of the
network.

Based on this property and the fact that the NLMs are extensions of the McCulloch-Pitts neu-
rons, we obtain the Separation Principle of Learning and Control, stated below. The importance
of this principle lies in the fact that before we actually use the system, we can set all a’s to
be zero. We then train the network using the back-propagation algorithm with a prespecified
training set so that the network has the desired stationary property. After training is done, the
parameters a' can be resumed and the network will function as a normal system.

Separation Principle of Learning and Control: The Training Process
of an NNLM and the Control Process after Training Can Be Separated

To illustrate this idea, let us now consider a small network with one hidden layer and two
hidden neurons (see Figure 5). Using the same notations, we may have the following set of
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Yk

Uk

Figure 5. A simple network.

equations for each neuron:

td =a%z]_; +u,
node 0 : o 0.0
v =s0(}),
i =a xi_l +wy; yl
node 1 and node 2 : { f ki : k,’
e =s2(ctx}), i=1,2,
2§ =a%z]_| +wnyi +wanyl,
node 3 : 1 ne1
Y =83 (C T ) ’

where superscript i is the index for the i*" neuron. With this network, let us now consider a
simple tracking problem. The input to the plant is given by ux = 4, for all k > 0. Our goal is
to keep the difference between the actual output and the desired signal y4 as small as possible,
where yq is a constant. Usually, we need to analyze the steady state of the output of the system.
In our case, we shall perform the same a.nalySis and assume that all state variables have reached
their steady states. Denote z* as the steady state for the ith state variable, and g as the steady
state for the output yx. Again, for simplicity, we assume that the activation function so(.) for
input node is linear. With these notations, we have the following:

o _%"
¥ 1—-a®’
0_
1_ wiiecu 4.9
T = Emaa-ay (“9)
2 wlgcoﬁ
T

T 0—a?)(1 - ad)’
3 wa1 w1 Aelu oo wWig A ea
’ :1—a332((1—a°)<1—a1>)*1—a3”((l-a°)(1—a2))’
g =s3(c*2%) (4.9)(cont.)

—s 03’11)218 wucoclﬁ + 63‘(U228 wlgcoczii
TR E\ -0 <)) T2\ G- /|

Now, let us define the following weights w}, w}, w}, w} as

1
w,_wuc /__w1202 ,__w2103
1T el 2T 1-a® 37 1-a®
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Then, equation (4.9) becomes
§ = s3[wj 52 (w}@') + w52 (wad)]. (4.10)

Obviously, equation (4.10) is the conventional expression of this network, when a* = 0,¢* =1
for i = 1,2,3, with which we are very familiar. This is exactly the input-output relationship
of a typical feed-forward neural network. Thus, we may construct a training set consisting of
the input line being the value of @/, and the desired output line being y4. Then we can use a
learning algorithm, for example the back-propagation learning algorithm, to train the network
such that the output of the trained network is as close as to y4 as possible. Once we have trained
the network, we know that the system—the network with a* and ¢* being resumed—has the
desired stationary property when the state variables reach their steady states as long as we set
wy, W2, W3, and W4 as

w11 = (1 — al) w;, w2 = 312- (1 - a2) wé,

1
Py
woy = -13 (1-a®) wh, wen= 2 (1-a?) wj.
c c?
where w}, w}, w}, w} are the weights after the network has been trained. After the training, at
and ¢* can be resumed to their normal values and the network is ready to be used as a control
system.

5. LINEARIZATION VIA TRANSFORMATION
OF COORDINATES AND NONLINEAR FEEDBACK

In Section 4, we saw that our representation resulted in a nonlinear discrete-time system.
There are many reasons for linearizing a nonlinear system, and many publications in the liter-
ature [25,26,46,48,49] discuss this problem. Before we proceed, let us look at our discrete-time
system whose nonlinearity arises from the nonlinear activation functions. In general, the activa-
tion functions in input nodes of a neural network are linear. Thus, the state-space description of
our system has the form

:cg =a® xg_l + ug,

xlzwncoaoxo_ +atzi_; +wi P ug,
k k-1 k-1

-2 0,0,0 -2 _n-2 0

TR 4 = Win—2)C @ Tp_1 +a" " TpZ{ +Win-2)C Uk, (5.1)
n-—-2

Zpl=a"tepTl + Z woi sz (cfa’ zh_y + Fwyic®a® 2Ry + Fwy AP uk),
i=1

Yk = s;;(c"’l:cz'l).
The above equations can be written in the following form:
xlc = f(xk—lvuk)v (52)

where x; = (29,...,207!) and f(zk—1,uk) = (fo(Xk-1,8k),-- -, fa—1(Xk—1,uk)) is & vector of
the functions which are defined above.

From the above, we know that the overall system consists of a linear subsystem cascaded by
a nonlinear subsystem together with a nonlinear output equation (see Figure 6). This, in turn,
implies that the overall system is a nonlinear one.

It is natural to consider the problem of locally linearizing the above system via coordinate
transformations and nonlinear feedback. In general, not all nonlinear systems can be so linearized.
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Nonlinear
Function

Figure 6. Nonlinear system representation of order n.

A necessary and sufficient condition will be given in Section 5.2. Once a linearized system is
obtained, it is not too difficult to implement a nonlinear control law to have the system track
some desired signal.

5.1. Preliminary

We consider a smooth discrete-time nonlinear dynamic system
Xk = f(Xg-1, ux), (5.3)
where xi = (20, 2},...,27 ") and ug = (ul,u},...,u ) are smooth local coordinates for the
state-space M and input space U, respectively. Before discussing feedback linearizability for (5.3),
we introduce the notion of a regular static state feedback. We call a relation
U = oXg—1, Vi), (5.4)

a regular static state feedback whenever %%(xk_l,vk) is nonsingular at every point (Xx—1,Vi).
Notice that this implies locally a one-to-one relation between the old inputs ux and the new
controls vi. We can now formulate the notion of feedback linearizability for (5.3).

DEFINITION 1. Let (xg,up) be an equilibrium point for (5.3), i.e., xo = f(xp,up). The sys-
tem (5.3) is feedback linearizable around (xg,ug) if there exists
(a) a coordinate transformation S : V € R* — S(V) C R defined on a neighborhood V of x,
with S(xg) = 0; .
(b) a regular feedback u = a(x,v) satisying a(xg,0) = uy and defined on a neighborhood
V x O of (x9,0) with 3—‘:(x, v) nonsingular on V x O,
such that in the new coordinates z = S(x), the closed loop dynamics are linear
zy = Azx_; + Bvy, (5.5)
for some matrices A and B.

At this point, let us look at the equilibrium points of our nonlinear system. For the system (5.3),
it is not difficult to show that the x*, u* satisfying f(x*, u*) = x* have the form

*

Ox __ u
=1 al’
™ = T [w11¢%a® 2% + wy; P ur],
' (5.6)

-2

_ 1 ju C s ) .

(=D _ {—anT Z wo; 82 (c’ a T 4wy P a® 2% 4 ¢ wig &0 u#) )

i=1

Therefore, 0%, z'*,...,2("=2* are all linear functions of u* but z~V* is not.
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5.2. Necessary and Sufficient Conditions for Local Linearization via
Transformation of Coordinates and Nonlinear Feedback

In this section, we will use Grizzle’s necessary and sufficient conditions {50] to prove that our
nonlinear system is locally linearizable to a controllable linear system.

Before we formally give the result in the next section, let us look at a sequence of distributions
given by Grizzle in [50]. This sequence will be instrumental in the solution of the feedback
linearization problem for (5.3).

Let 7 : M x U —» M be the canonical projection and K the distribution defined by

K =ker f., (5.7)

where M C R*, U C R™ and f, is the dual vector space homomorphism from TM x TU to TM.
ALGORITHM 5.1. Assume f, has full rank around (xg, up).
STEP 0. Define the distribution Dy in a neighborhood of (xg,ug) in M x U by

Dy = 771(0). (5.8)

STEP 1+1. Suppose that around (xg, ug) D; + K is an involutive constant-dimensional distribu-
tion on T'(M x U). Then define in a neighborhood of (xg, ug)

Dy =t fu(Di), (5.9)

and stop if D; + K is not involutive or constant-dimensional.

The effectiveness of the above algorithm rests upon the following observation.

LEMMA 1. Let (zo,up) be an equilibrium point of (5.3), and assume that f, has full rank around
(zo,u0). Let D be an involutive constant-dimensional distribution on M x U such that D + K
is also involutive and constant-dimensional. Then there exists a neighborhood O of (g, uo) such
that f.(D|o) is an involutive constant-dimensional distribution around xy.

Based on the above algorithm and lemma, Grizzle [50] states necessary and sufficient conditions
for locally linearizing a nonlinear system to a controllable one.

THEOREM 4. (See [50].) Consider the discrete-time nonlinear system (5.3), about the equilibrium
point (zg,up). The system (5.3) is linearizable around (zo,up) to a controllable linear system if
and only if Algorithm 5.1 applied to the system (5.3) gives distributions Dy, ..., Dy such that
dim(D,) =n+m.

The proof of the above lemma and theorem can be found in [50}. In the next section, we are
going to show that our nonlinear system satisfies the conditions of the above theorem and thus,
the system is locally linearizable.

5.3. Main Result

Now, let us consider our nonlinear system (5.3) in which f(z,u) has the form

a®z® +u
wi1c?a®z® +alzt + wy clu
f(z,u) = : ) (5.10)
’ Win-2)c®a® 20 + a2 272 4 wy(p_gyCu
a® 1zgn—1 4 ZZ:;" wa; 82 (¢ af 2 + ¢ wos @ a® 2% + ¢f wy; P u)
where z = (2% z!,...,2""1) and u is a scalar. Before we present the main theorem, we shall

state and prove some lemmas, which will be used later.
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LEMMA 2. Consider the nonlinear system (5.3) and the nonlinear function f(z,u) of (5.10). If
a*#0 for 0 <i<n-1, then f, has full rank around the equilibrium point (z*,u*).

PROOF. By noting that f : M xU — M is given by (5.10), we can evaluate J:TMXTU - TM
by considering the natural basis (z2y,. .., 5:28=1) in TM and £ in TU, where M € R*, U ¢ R,
and TM and TU are the tangent spaces for M and U, respectively. Let 2,22, ..., Z" be the
basis in the image of f,. Then,

9
0

ol 021 | =A o
| e
Ou

where A = (a;j), given by a;; = %5;, ,j=0,1,...,n—1, and an; = %%t, k=0,1,...,n—1.
Thus,

ra® wyyca® Win-2)c®a® 772 wy; sh(.) ¢ wys ®a®]
0 al .. 0 way sh(.) ¢t al
A= | : : : (5.11)
0 0 .. a™? Wa(n—2) 85(.) c*"2a""2
0 0 . 0 a™!
[ 1wy Wi(n-2) c® Yl waish() Fw® |
Since a* # 0 for 0 < i < n — 1, rank (4) = n and thus £, has full rank around (z*,u*). (]

REMARK. In the subsequent analysis, we shall see that the matrix A plays an important role,
especially in the case where an NNLM with more than one hidden layer is considered.

LEMMA 3. Let the conditions in Lemma 2 be satisfied. Let D be a subspace in TM x TU. Then

. _ [ dim(D), ifdim(D) < n,
dim(£.(D)) = { n, ifdim(D) =n+1.

PROOF.

CasE (i). dim(D) < n: Suppose that dim(D) = p < n and let Y1,Y?2,... Y? be the basis in D.
Then, without loss of generality, we have

ox
v 9
Y2 32:1
.| =P , (5.12)
, o
y? ozn-1

where P € RP*("+1) and rank(P) = p. Then,
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.ﬂ : :zpﬁk : = PA . ==P . =

Ozn-1
i)

\

To prove that f.(D) = span(Wy,...,W,), it suffices to show that rank (P) = p. Indeed, the

fact that rank (P) = p < n and rank (A) = n implies that rank (P) = p. Thus, dim(f.(D)) =

dim (D).

CASE (ii). dim(D) = n+ 1: Then (5.12) still holds, but in this case, P € R("¥DX(n+1) gnqd

rank(P) = n + 1. The fact that rank(P) follows from Sylvester’s inequality on the rank of the

product of two matrices and the rank inequality for matrices A € R**", B € R**™(m < n)

rank(A) + rank(B) — n < rank(AB).

Therefore, dim(f.(D)) = n. ]

LEMMA 4. Let 7 denote the canonical projection from M x U onto M given by w(x,u) = z, and
let Q be a subset of TM with dim(Q) = p < n. Then dim(r;1(Q)) =p+1.

PROOF. Let Y3,...,Y, be a basis in Q. Then any vector field in Q can be represented by
S, a:Y;, that is,

=1

h

(a',...,a%,0,...,0) 1{)”

But
Y1 0 (7]
; Er Er
Y, | _ (P1 Pz) : _p :
0 0 B o o ’
: dzn Bz™
0 0 0

where P, € RPX™, P, € RPX}, Py € R("*+1-P)X1 and rank (P;) = p, rank (P;) = 1.
Let [52r, ..., 5% 2] be a basis in TM x TU, then

9 3
613 axl
"2 el
ox Bz
9 0
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where I is an identity matrix. Thus,

(20

O 9
F] a1
Ozt ' :
7o (6 an a) : =(a, n a)m? 9
d dzn
Ozn—1 0
0
9
ozt
R . : >, 9 ]
= (&1 o a)| 9 | =3 digs+ag-,
oz =1
9
Ou
and
Y 9 9
: =) ozt
-1 Y% = Pr7! =P
™o * | 8 It o
: oz a;"
0 =
0 ou
So rank(P) = p + 1 implies that
b4
1r,;1 Y
0
0
has dimension p + 1 or dim(7;1(Q)) = p + 1. 1

THEOREM 5. Consider the discrete-time nonlinear system (5.3) about the equilibrium point
(z*,u*). Ifa* # 0 for 0 < i < n — 1, then the system is linearizable around (z*,u*) to a
controllable linear system.
PRrOOF.
STEP 1. Using Lemma 2, we see that f, has full rank around the equilibrium (z*,u*). Therefore,
we can apply Algorithm 5.1 to compute D;.

Let K = ker f.. Note that f, : TM x TU — TM, and TM x TU C R* x R and TM C R™.
Therefore, f.(a',...,a" a) = (a',...,a",a)A. The equality f«(al,a?,...,a",a@) = 0 implies that

(@,...,a"a)A=0. (5.13)
Let )
1 —wc® —W1(n-2) d? - E::f wi; s2(.)ct wyg &
0 1 oo 0 0
T=|: : : : (5.14)
0 0 1 0
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and
a@® 0 .- 0 0
0 a' -+ 0 wysh()ctal
A*=AT=|: .o :
0 0 --- 0 an-!
1 0 0 0

(at --- @ &)A*=0,
or
(@+a°a' a'a®? -.- a" 257! Z::f wa; sh(.) ¢t afaitt +a""1a" ) = 0,
from which we conclude that @2 = --- = a*~! = @® = 0. But @ = —a®a!. So,
a 7]
K =span|al— —a%al=—},
P ( ! ou

where ¥ = 3%— - ao% and dim(K) = 1.

STEP 2. Let Do = m;1(0). Then, we have Dy = span(g—u) and dim(Dp)=1 from Lemma 4. Let
Dy =77 fu(D;) for 0 <i< m.

Suppose now dim(D;) = p and Xj,..., X, are a basis for D;. Then we have

- 0
.
X1 6‘?
X .
;2 =P| g |,
: ™
X,
’ 9
-au-

where P € RP*("+1)_ Thus, [X,..., Xp, Y] is a basis for D; + K, and

-_?_-
1
X, 6".”
. P :
. -_— sae —_— a s
’;» 7 P
9
hau-

where 5 = [1 00 --- 0 —a°). Obviously, [X;,X;] = 0 for i # j and [X;,Y] = 0 for all i.
Therefore, D; + K is involutive and has constant dimension. Repeatedly applying Lemma 2 and
Lemma 3 on D;, and using induction on i, we obtain a D, whose dimension is n 4 1. It follows
from Grizzle’s necessary and sufficient condition that the nonlinear system is linearizable to a
controllable linear system. | |

REMARK. In the proofs of the above lemmas and the main theorem, no restrictions were placed on
the activation functions. Thus, we may employ any type of continuously differentiable functions,
though typically these functions are sigmoidal.
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5.4. A More General Case

In a more general case, we consider an NNLM with one input, L hidden layers and one output
layer. In the j*P hidden layer, where j=12,...,L, denote the number of neurons as l;. Then,
the total number of hidden neurons is n =l + Il + --- + I1. The total number of equations for
our system becomes n + 2.

To be more specific, we have the input node equation

20 =a%2)_, 4wy, (5.15)
and the output node equation
173 L
S = Y e, (5:16)
=1

where y,f”' ’s are the outputs of the neurons in the L*" hidden layer and wpj ,42’s are the weights
connecting the L*® hidden layer to the output layer.
The hidden node equations are more complicated. In the j*" hidden layer, the ith node equation

is represented by
;-1

of =dall |+ > wi-newy %, (5.17)
g=1

wherei=1,...,l;; =1,...,L, and
g g (cu—nqxij—l)q) , (5.18)

where s;_; is the activation function in the (j— 1)** layer. c~1 ¢ is the scalar for the ¢*» neuron
in the (j — 1)*® layer.

With these equations, we can look at the matrix A defined in equation (5.11). In this case, the
matrix A is an (n + 3) x (n + 2) matrix, that is 4 = (i) (n+3)x (n+2)- If we define a submatrix
of A as A1 = (8ij)(nt2)x (nt2), 8ij = ai5, 4,J = 1,2,...,n 4+ 2, then A, is a triangle matrix with
diagonal elements being a°,...,a"*2. By carefully examining the proofs of the Lemmas 2-4,
we can conclude that Lemmas 2-4 still hold in this more general case. However, the proof of
Theorem 1 becomes much more complicated.

6. ILLUSTRATION AND SIMULATION

Here, we outline an example dealing with design of a neurocontroller with NNLM for control
of an aircraft in wind shear during take off [3,8]. Comparison of results shows that the dynamic
neurocontroller performs well in the presence of wind shear.

We incorporate the same assumptions as Miele and Leitmann, [51,52]:

(1) the rotational inertia of the aircraft and the sensor and actuator dynamics are neglected,
(2) the aircraft mass is constant,

(3) air density is constant,

(4) flight is in the vertical plane,

(5) maximum thrust is used.

We employ equations of motion for the center of mass of the aircraft, in which the kinematic
variables are relative to the ground while the dynamic ones are taken relative to a moving but non-
rotating frame translating with the wind velocity at the aircraft’s center of mass. The kinematic
equations are

z =V cos(y) + Wy,
h = Vsin(y) + Wy
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The dynamical equations are
mV = T cos(a + ) — D — mgsiny — m(W; cosy + Wy siny), (6.1)
mV4 = Tsin(a + 6) + L — mgcos~y + m(W,, siny — Wj, cos7), (6.2)
where T = T(V) is the thrust force, D = D(h,V, ) is the drag, L = L(h,V, a) is the lift, and
W, = W,(z, h) and W, = Wj,(z, h) are the horizontal and vertical wind shears, respectively. In

these equations, z(t), h(t), V(z),y(t) are the state variables and the angle of attack a(t) is the .
control variable. Other parameters are:

def s . -
g = gravitational force per unit mass, ft sec 2,

def . _
m < aircraft mass, 1b ft71 sec?;

def . . . -
V = aircraft speed relative to wind base reference frame, ft sec 1,

]
¥ 4 elative path inclination, rad;
& %' thrust inclination, rad.

Our goal is to design a control law a = aj for the discrete-time version of equations (6.1),(6.2)
such that the quantity [hx+1 — hr]? is minimized, where hi4; is a value calculated from Vi4, and
o1 and h, is a given value for the desired constant rate of climb. The cost function is given by

. N2
J(k+1)= (Vk+1 sin g1 — hr) .
The neural controller is designed so that the weights update at each step to minimize J(k +1).

Wind Shear Model

Much effort has gone into modeling and identifying wind shear, e.g., [53,54]; in this work, we
utilize the wind shear model [52] described by the following equations:

W, = —Wjyosin (2—;;) ,

_ —Who[1 — cos(2xt/To)]

= 5 ,

where W, and Wjyq are given constants, reflecting the wind shear intensity, and Ty is the total -
flight time through the downburst.

Wh

Bounded Quantities

In order to account for aircraft capabilities, it is assumed that there is a maximum attainable
value of the relative angle of attack a; that is, a € [0, @], where a, > 0. The range of practical
values of the relative aircraft speed, V, is also limited, that is,

vsvsv.
Force Terms
The thrust, drag, and lift force terms can be approximated
T = Ao+ AV + A V2,
D= %Cppsvz,
L=5Cup8V?,

where Cp = By + B1a?, C} = Cp + Cra. The coefficients Ag, A;, A2 depend on the altitude of
the runway, the ambient temperature, and the engine power setting. By, By, Co, C1, on the other
hand, depend on the flap setting and the undercarriage position.
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Controller Design

We employ a neurocontroller with one input layer of four neurons. The input variables to the
network are V,V,,4. The control output is given by aj, = d(wi(V — V(0)) + waV + ws(y —
7(0)) + wa), where the initial values V(0) and v(0) will be given in the next subsection. The
threshold function ¢ is the sigmoidal function T'(z) = A1/(1 + €79%), where g is a design gain
and A is the saturation limit. In our study A = . The formula for updating the weights is based
on a gradient descent algorithm.

Simulation Results

Numerical simulations were carried out for

(i) flight in the absence of wind shear using different gains,

(ii) flight with wind shear, again using different gains.

For comparison, we also include the simulation results under the same conditions using the
controller proposed by Leitmann, and that of Miele’s simplified game guidance (Figures 7a, 7b).

Comparison of the results shows that the neurocontroller performs well in the presence of wind
shear. Under the same conditions, the neurocontroller works better than those of Leitmann and
Miele. On the other hand, for a more intense wind shear, e.g., Woo/Who = 80/48, we need
to adjust the four weights accordingly, since otherwise, the controller will not perform as well.

N

(b) Leitmann’s controller.

Figure 7. Comparison of results for control of aircraft in wind shear.
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Our attempt in Sections 2-5 of this report has been to mathematically formulate the control
systems inside the neural networks. We have represented each linear SISO system in the neural
network, by introducing a small feedback loop inside each neuron, rather than a feedback connec-
tion. For this paradigm of neural networks, we can directly use the internal states to construct
a feedback control law. What is more important is that a network of this type is itself a system,
but not an unknown “Black Box”. Thus its input-output performance can be studied just as in
the case of the classical control system. Based on this observation, many conventional synthesis
methods can be directly used to design the system. The stationary property of the system can
be preassigned by means of learning, a unique feature that the classical control system does not
have,
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